
AD-A174 567 ARLO ANOTHER REPRESENTATION LANGUAGE OFFER(U)
MASSACHUSETTS INST OF TECH CAMBRIDGE ARTIFICIAL
INTELLIGENCE LAB K W HAASE OCT 86 AI-TR-981

ADCLASSIFIED N88814-85-K-Si24 /G 9/2 M

solllllllllll

llllllllllsl
lollImllImllEEEIIIIIIhIIEE

IIJI25111*mumg Lg MAO

6CROCOPY RESOLUTION TEST CHART
PWTIONAI BUREAU OF STANDARDS-I963-A

.w
1

~c

Lfl

Technical Report 901

ARLO:
Rp Another
Representation
Language Offer

Kenneth W Haase, Jr.

MIT Artificial Intelligence Laboratory

Thi doument has been approved -,

for public release and sale; its

distribution is unlimited. ELECTEil NOV 2 " 6" 06'4 , n

_86 11 26 132 -.

d!.

UNCLASSIFIED
SECUPITY CL ASS~C ATION OF 'NIS PAGE (O'ho Do*& Enteed)

READ INSTRUCTIONSREPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
I REPOkrT NIJMSER 2 OVT ACCESSION NO. S. RECiPiEUT*S CATALOG NUMBER

AI-TR-90 1 M -/L 9_______________

4 TITLE (and Subtitle) S. TYPE OF REPORT A PERIOD COVERED

ARLO Technical Report
Another Representation 9. PERFORMING ORG. REPORT MUMsER

Language Offer
7. AUTMOR(s) 8. CONTRACTOR GRANT NUMGBER(o)

Kenneth 1-. Haase Jr. N00014-85-K-0124

S. PERFORMING ORGANIZATION NAME ANO ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK

Artificial Inteligence Laboratory AREA G WORK UNIT NUMBERS

545 Technology Square
Cambridge, MA 02139

$I. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Advanced Research Projects Agency October, 1986
1400 Wilson Blvd. S. NumBER O F PAGES

Arlington, VA 22209 .95

14. MONITORING AGENCY NAME A ADDRESS(11 dlloienS how ConfroiUtip, Office) 1S. SECURITY CLASS. (of tis~ ergoW)

Office of Naval Research
Information Systems Unclassified
Arlington, VA 22217 160. DECI ASSIFICATION/ DOWNGRADING

SCNJ EOLE

to. DISTRIBUTION STATEMENT (of tis~ Repie)

Distribution is unlimited.

17. DISTRIBUTION STATEMENT (of IH. abstract Mfisted in, Rise& #.I dfto,.nt Ionit Ito~a)

1S. SUPPLEMENTARY NOTES

None

III. KEY WORDS (Conufen reUIo tsiU*de I# as oosem ed Idsettyp by block .oi.)

Knowledge Representation, Representation Languages, Meta-Representation,
Reflection, Artificial Intelligence, AI Languages, RLL, Representation
Language Languages

20. ABSTRACT (Ce"11#11111 On 0o0w00 .It 010aee6mo Amd D0enI"fil by block ONOee)

This paper describes ARLO, a representation language language loosely
modelled after Greiner and Lenat's RLL-1. ARLO is a structure-based
representation language for describing structure-based representation
languages, including itself. A given representation language is specified
in ARLO by a collection of structures describing how its descriptions
are interpreted, defaulted, and verified. This high level description is
compiled into LISP code and ARLO structures whose interpretation fullfills

,roo CO JA)17 DTION O F I NOV045 S2 OBSOLETE UCASIFIE
D AN7 143 S/N 0.102-0ie* 6601 1 UNCLASSIFIED_______________

SECURITY CLASSIFICATION OF TNIS PAGE (ft.~ Odff& 3tt

fA

the specified semantics of the language. In addition, ARLO itself ---

as a language for expressing and compiling partial and complete language

specifications. --- is described and interpted in the same manner as the

languages it describes and implements. This self description can be extended

or modified to expand or alter the expressive power of ARLO's initial

configuration. Languages which describe themselves --- like ARLO ---

provide powerful mediums for systems which perform automatic self-modification,

optimization, debugging, or documentation. AI systems implemented in such

a self-descriptive language can reflect on their own capabilities, applying

general problem solving and learning strategies to enlarge or correct them.

ARLO
(Another Representation Language Offer)

The Implementation
of a Language for

Describing Representation Languages

by

Kenneth W. Haase Jr.
MIT Artificial Intelligence Laboratory

Cambridge, Massachussets 02139

This paper describes ARLO, a representtaton language language loosely modelled after Greiner and Lenat's
RLL-1. ARLO is a structure-based representation language for describing structure-based representation languages,
induding itself. A given representation language is specified in ARLO by a collection of structures describing how its
descriptions are interpreted, defaulted, and verified. This high level description is compiled into lisp code and ARLO
structures whose interpretation fulfills the specified semantics of the represent'ti0n. In addition. ARLO itself - as a
representation language for expressing and compiling partial and complete language specifications - is described and
interpreted in the same manner as the languages it describes and implements. This self description can be extended -,r
modified to expand or alter the expressive power of ARLO's initial configuration. Languages which describe themselves
-- like ARLO -- provide p,-.werfnl mediums for systems which perform autc nitic self-mnodific:t i,n. .ptimiz:iti-n,
debigging, o:r document ation. A! systems implemenled in such la self-descriptive linguage c:n reflect t lwir ,wn

caLpabilities and limitations, applying general learning and problem solving strategies to enlarge .o-r allevite them.

tzrf

j r
~ ~ * - - r ' 51;

ARLO Ken Haaue

Acknowledgement
In the last four years at MIT, so many people both in the histitott and outside of it have touched

my life in special, magical ways. These acknowledgements are long, but tile .,)I begin It ofler appropriate ,

thanks for gifts of knowledge, support, and care from all those wh,, have S, freely give,, %

One's footing always feels firmer when secured on a certain foundation, and the advi(e and guidance of
Marvin Minsky and Patrick Winston has been just such a constant support and foundation during my career
at MIT. The research described here and the research and studies that led to it would not have been possible
but for their advice, inspiration, and well-placed admonitions. More than contributing to this research, they
have contributed to me, and my debt is both to themr and the intellectual environment they have created at

MIT.
Without particular aims - in the form of specific scenarios or particular problems - artificial intelligence

goes little beyond "engineering for philosophers". The ends of the research describe in this thesis have
often been shaped and molded by the dreams and quests of researchers at ATARI's labs in Cambridge and
Sunnyvale. The environment and "dreams in the making" at these institutions were the products by many
people, but I especially wish to thank Alan Kay, Margaret Minsky, and Cynthia Solomon for their support
and inspiration. These individuals - and the many others once or still at ATARI's labs - helped shape an
environment in which tomorrows could be made.

MIT's Artifical Intelligence lab has been another constant source of intellectual support and inspiration
in my career at MIT. The students, faculty, and staff of the Al lab have greatly enriched the intellectual

content of the author's life. Particularly, Phil Agre, John Batali, Dave Chapman, Ken Forbus, Dave Levitt,
and John Mallery have - with their constant interest and dialouge - both sustained the author and greatly
improved the intellectual aims of the research here described.

Despite these firm supports, the sanity of the author has often been strained by the barrage of deadlines,

classes, and the prodigous bulk of MIT as an institution. Saving me from this barrage are many friends who

have enriched and blessed my life. Thank you Gumby, Margret, Danny, Gary, Charity, Hazel, and Jim. To
you and all the others I fear I have forgotten, I love you all.

The Beacon Hill Friends Meeting has been a source of joy and inspiration - of a different kind - since

my discovery of it nearly two years ago. To all of you - but especially Howard, Ginny, Gordon, and Mary -
I bear a debt of joyous reflection and blessed quietness. God bless you all, dear Friends.

Much of the sopport for this research was provided by the Advanced Research Projects Agency of the
Departnment of Defense under Office of Naval Research Contract N00014-80-('-0505. Of course, the opinions

in this thesis are those of the author and in no way reflect the opinions of the Department of Defense or the
US Government. In turn, the opinions of the Department of Defense also in no way reflect the opinions of
the author.

Finally. but most constantly. my family has been a support - before and above all other supports - of
my studies and research. They have endured my many missteps and failings, and returned love and support.
I wish I could adequately return what they have given me.

Ken Haase
Cambridge, Massachussets

4. A %%

IF KL
mud&""MM 7'

* *ARLO Ken Haase

Dedicated to
The Shapers, Teachers, and Dreamers

Of
Atari's Cambridge Research Lab

ARLO Hen Haase

CONTENTS

Chapter 1: ARLO: Representing Representations I
1.1: What Good is Representing Representations?9

. . 2

1.1.1: RLL's as implementationi languages 2
1.1.2: RLL's as Mediums for Programs Which Grow. 3

1.2: Representation as Inference 4
1.2.2: Spontaneous and Deliberated Inference. 4
1.2.2: Characterizing Spontaneous Inference 4
1.2.3: The Evolution of Spontaneous Inferences. 5

1.4: What is ARLO? . 6

1.4: Basic Concepts: A User's Introduction. 6

Chapter 2: ARLO's Implementation 1

2.2: Units and Knowledge Bases. 13

2.2: The Value Dependency Mechanism. 13
2.2.1: Dependency Mechanism Protocols 15

2.3: ARLO Errors and Conditions 16
V2.3.2: Anticipating errors. 17

2.3.2: Classes of Errors 17

2.5: Reflexive Operators 19
2.5.0: Staunching an infinite regress 19

2.5: Representing Representations: The Details. 19
2.5.1: Generic Objects & Shadow Slots. 20
2.5.3: Type Restricted Slots 21
2.5.3: Defaulting Slots. 21

2.6: The ARLO Coder. 22
2.6.1: Representing Programs. 23
2.7.0: ARLO's Coders. 24
2.7.0: User Defined Functions. 4

2.7: The Type System. 24

2.8: Archives and Layers: Saving Representations. 25
2.8. 1: Layers. 27

Chapter 3: An Example: Representation 28

3.1: B uilding B asics . 28

3.2: Defining Slots 29

3.3: Inheritance Mechanisnms....................

Utz ii

ARLO Ken Haase

3.4: Shadowing Slot Definitions 32

3.5: Building the data base. 33

3.6: At the Console 35
3.6.1: Defaulting of Slots 35
3.6.2: Dependencies and Decaching. 37
3.6.3: O ther slots . 42
3.6.4: Errors . 44
3.6.5: Shadowing Definitions46

3.6.6: Modifying our language49

Chapter 4: An Example: Introspection 54
4.1: Explanation Structures54

4.3: Textual Generation 55

4.3: Graphical Presentation. 55

4.4: A n Explanation of the INQUIR system 57
4.4.4: Units without any prototype 57
4.4.4: Units with a prototype of Hacking57

4.4.4: Units with a prototype of Hand Coded Function. 57
4.4.4: Units without aiiy prototype 57

4.4.7: Units with a prototype of Hacking. 58
4.4.7: Units with a prototype of Hand Coded Function. 58
4.4.7: Units with a prototype of Person Slot. 58
4.4,8: Units with a prototype of Person59

4.4.12: JUnit.s with a prototype of Slot 60
4.4.12: Units with a prototype of Shadow Slot. 60
4.4.12: Un1itS with a prototype of Type 60
4.4.12: l-nits with a prototype of Winner 60

Chapter 5: Conclusion 61

5.1: Flaws in ARLO . 6 1
5.1.2: Flajws in' the Dependency Network (2

5.1.2: Flaws in Comnbiniing Slot Act ions. 62

5.2: Why RLLs are no good 63

A-0.3: Why RLL's Aren't So Bad...... 6

iv

ARLO Ken Haase

Append ices

Chapter A-i: An ARLO 'Explanation'I....... G
A-1.1: Units defined in Arlo: SOURCES; BOOT 66

A-1.1.2: Units with a Makes Senise For slot of Any-Type...... I.6
A-1.1.2: Units with a Makes Senise For slot of Slot-Type 66

-~~ A-1.1.3: Units with a Make., Sense For slot of unit-Type........ 8

A-1.2: Units defined in Arlo: SOURCES; COPCEPS.. 70

A-1.2.2: Units with a Data Type slot of Any-Type 70

A-1.2.2: Units not classifiable by Data-Type 70

A-1.3: Units defined in Arlo: SOURCES; CODING 71
A-1.3.2: Un'lits Wit~h a Makes Sense For slot of Coded- Function -Type 7]
A-1.3.2: Units with a Makes Senise For slot of Coder-Type 71
A-1.3.4: Units with a Makes Sense For slot of 4TIFunction-Typej. 72
A-1.3.4: Units with a Makes Sense For slot of Impl emented-Funct ion- Type. 72
A-1.5.2: Units not classifiable by !-akes -Sense -For 74

A-1.5: Units defined in Arlo: SOURCES; LISP. 74

A-1.5: Units defined in Arlo: SOURCES; TYPES. 74
A-1.5.2: Units without any prototype. 74
A- 1.5.2: Units with a prototype of Coder 74
A-1.5.5: Units with a prototype of Function Descriptor 75
A-1.5.5: Unit.- with a prototype of Hand Coded Function. 75
A-1.5.5: Units with a prototype of Slot 75
A-1.5.6: Units with a prototype of Type 76

A-1.6: Units defined in Arlo: SOURCES; WHISTLES 77

Chapter A-2: An Explanation 'Explanation 79

A-2.1: Units defined in Arlo: Al; DOCUMENT 79
A-2.1.2: Units with a prototype of Explanation Slot 79

A-2.1.2: Units with a prototype of Hand Coded Function.. 79
A-2.2.2: Unit~s with a prototype of Slot . 81

A-2.2: Units defined in Arlo: AI; EXPLAIN 81
A-2.2.2: U-7nits without any prototype .. 81

A-2.2.4: Uits with a prototype of Explanation Slot 82
A-2.2.4: Units with a prototype of Explanation. 82
A-2.2.4I: Uits with a prototype of Hand Coded Function. 82
A -2. 2.6: U'nits with a prototype of Slot. 83
A-2. 2.0:; t fits %ithI a prototype of Type 83

1 lii '% it h pi-mdotNI pe of Uniit Explanation Slot. 84

V

ARLO Ken Haase

A-2.2.8: Units with a prototype of Unit Set Explanation Slot 84

A-2.3: Units defined in Arlo: SOURCES; LISP 85

C hapter A-3: References

vi

A, .

ARLO Ken Haase

Reading this thesis
The paper in your hands began as a primer for ARLO users, but with time it has -- much like ARLO

itself - growni mttated. and gone through rearrangements. The bu11lk of this paper discusses representatilo
language languages in general, and the detailed impletmentation of ARLO in particular. These discussions are
followed by two examples presenting ARLO as both a system-building tool and as a framework for building
auto-analytical ,,stems.

The first chapter presents motivations for representing representations, and makes some first steps
towards generally characterizing what is meant technically (as opposed t.o philosophically) - in the Al
community by "represeintation." It theii introduces ARLO as a language for representing representation
languages. The chapter closes with a scenario of a new user being slowly introduced to ARLO's functionality,
features, and faclities.

The second chapter steps behiid the scenes to talk about ARLO's internal construction, detailing how
the mechanisms of tle preceding scenario actually operate.

The third and fourth chapters of the thesis portray ARLO in two different roles. In the third chapter,
a toy latiguage for describing people and their interrelations is implemented; this language is then used to
describe t lie menibiers of an imaginary research lab. This embedded language and dat abase is then examined
land exteided itn an annotated script of a user's interaction with tlie system. This script illustrates ARLO's

facilities for accessing. modifying, and extending its representation1s.

The fourthi chapter presents an example of tools which examine representations and descriptions de-

. veloped in ARL() or its extensions. It describes an fxplanation system which takes a collection of ARLO
structures -- describing either some domain, some representation language, or both - and produces an en-
glish description of the structures. The focus and organization of this description is generated from general
properties of its topical structures extracted for the structures themselves. The explanation mechanism is
then applied -- as a demonstration - to automatically generate a description of the in-core implementation

of the previous example (the laboratory database).

Finally, in the appendices, this explanation mechanism is applied to both itself (the explanation system)

and the core of ARLO's default configuration.

vii

4 4'.

* . ' '. * * .:

ARLO Ken Haase

Chapter 1

ARLO: Representing Representations

In H.-,f801. Ilofstader makes the sweeping claim that Al advances are languaye advances. While this is
certainly too broad a generalization, it has a hefty component of truth: we develop languages which reflect
our developing theories so that we may actually bring those theories to the touchstone of implementation.
As our proposals and theories advance and change, so do the languages - the abstractions and primitives -
used to implement them. If we are really engaged in experimental epistemology, as some have characterized
Al, then the languages and representations we develop are the burners, flasks, lasers, and spectrographs of
our experimental laboratory.

But what precisely is an "Al language"? What distinguishes an Al language from a conventional pro-
gramming language used to write intelligent programs? One distinction we might draw is that Al languages
are languages embodying some theoru of Al programs. The facilities which an AI lajnguage provides generally

* grow from observation of the sorts of things which Al programs - written in either conventional languages
or other Al languages - tend to do: pattern matching, heuristic search, property inheritance, etc. A given
Al language combines a collection of these extracted primitives with a few organizational principles m-
tivated loth theoretically and technically - to provide a framewoik in which writing intelligeni programs

a, --- enc oding liumaij knowledge a id expertise - is easier and more elegant.

Yet in a deeper sense. atn Al language does not iierely provide a framework for expressing knowledge
and expertise in convenient ways: it implicitly embodies some knowledge itself. The knowledge it embodies
is the ontological foundation upoi which prograis or systetis in it build: properties inherit iii this way.
two things are similar (match) by thi, criterion, logical inferences are invalidated when this happens. and
Sso forth. In this sense. a given Al laiguage is tit Al program itself. eibodying a particular IIjeorv of how
a particulaI part of the world works. It's just that, in te case of representation I]%liguages. th part s nf
the world capt iied are tecliiiiques for representationt ald reasonig. But if an Al language i: itself ai, Al
pi,,ar.i)l, inu'ii,h e l. ,i'l a }iiiziiage '~hise, ",liiain" i- these Al languages 'U

V %%, e .,.I

ARLO Ken Haase

This paper describes ARLO, a representation language language which describes and implements
representation languages, Including Itself. Descriptions of languages in ARLO are compiled into inplementa-
tions, so that describing a given language in ARLO - in a suff1ietly precise way -- generates a reasonably
efficient implementation of the language as well as a manipulable description of its semantics and behaviour.

The first RLL (representation language language) was developed at Stanford by Greiner and Lenat
Gre(,'. Their implementation was dubbed RLL-1, and a version of it is used in Lenat's automated discovery

program, Eurisko[Len)831. Eurisko uses an accumulated body of heuristics to guide the mutative evolution of
representations and heuristics for various domains. A reflexive Al language - able to talk about and modify

itself and languages embedded in it - is ideal for this sort of evolutionary development of concepts and

expertise. ARLO was originally conceived as a Common Lisp [Ste841 version of the RLL-1, but has diverged
from it in several important directions.

1.1 What Good is Representing Representations?

Why do we need - or want - a language for describing representation languages? Our programming
languages already procedurally describe the representational mechanisms we use. What is the point of
having an intermediate language for describing those mechanisms?

An answer to this challenge may be revealed by describing what an RLL offers two distinct classes of
usrs: the expert-systens developer and the Al researcher. To the expert systems programmer tailoring

a representation for some understood domain, an RLL provides systems programming tools for developing
a system's representational paradigms and primitives. To the Al researcher building a program whose

understanding of its domain evolves through exploration and inner cogitation, an RLL makes a program's
understanding of a domain into a manipulable stuff which the program itself can access.

1.1.1 RLL's as implementation languages

The tools which an RLL gives the implementor of an expert system are primarily system programming tools-
tools which make the task of developing and debugging a given representation for a particular domain both
faster and easier. The features that make an RLL a powerful development environment for expert reasoning

systems are largely the same features that make modern LISP systems ideal for fast prototyping of any sort
of complicated system. LISP is a powerful development environment because (among other factors):

0 Programs and data are uniformly represented; the same tools used to describe and modify programs
can be used to describe and modify data structures.

* Embedded Languages - building on LISP's data and program structures - can take advantage of
already existing facilities of the LISP environment.

* The language can be dynamically and incrementally extended, as experiments with the implementational

or iheoretical feasibility of new ideas fail or succeed.

An RLL provides these same sort of features for higher level representational constructs:

* The description of a represenlation is accessible via the same mechanisms (in ARLO's case the ac-
cessing or modification of values in slots on structures) as the representation itself; indeed, these same

imechatisim: cami b. tiied to ac(ess and modify ARLO's description of le language ARLO!

I- 2

% % %"-%

[', i. ''.. " 2'' "'.. " ".2 2 '''.- """ /'.. " 2- .- ".''.""-','' " , . 2.2.,.' '2 .V'2". " , " '' 2"" 7" .. '".'W

ARLO Ken Haase

* Tools built for describing, examining, or massaging a given representation can be easily generalized to
other representations. System tools - used for describing, defining, and modifying representations -
call be just as easily applied to the structures of the representation as to the representation itself.

0 The definition of a representation - since it is stored as a mutable representation itself - can be
dynamically modified. An RLL can - and ARLO generally does - perform the appropriate bookeeping
to diminish unfortunate or fatal repercussions of such changes, while still supporting the intent of the
change.

The implementation of a given representation or program takes a high level task or goal and reduces it to
separately implementable parts. An RLL provides a tool kit and supply closet of such parts, where the
interchangability of its representational components makes mechanism or experience from one application

N transportable to another.

1.1.2 RLL's as Mediums for Programs Which Grow

To the researcher developing intelligent systems which grow and learn by themselves, an RLL offers a way to
let a program examine and extend its representation and understanding of a domain. The same properties
of an RLL which support design efforts of human expert system programmers make simpler the design of
mechanical expert system programmers which design and debug both other systems and themselves. While an
RLL does not neccessarily embody any fundamentally new learning or problem solving technology, it does
provide a framework for describing such technologies generically and reflectively (so that any sufficiently
general mechanism call be effectively applied to its own description).

For any level in an RLL-based system - described problem, specified language, or the RLL itself -
the same mechanisms for accessing and modifying its description are available. Due to this homogeneity of
representation, faculties and tools built to operate on a given level may be applicable to other levels in the
system as well. Lenat's Eurisko JLen83 system applies the discovery mechanism pioneered in AM JLen821
to such diverse domains as three dimensional VLSI design, space gaming fleet design, and number theory.
But since the discovery mechanism - largely a collection of eclectic generation heuristics - operates in
and is described in an RLL, it call be applied to itself, improving its behaviour with the accumulation of
"experience" and examples in the application of heuristics. 1

Analytic and descriptive tools developed in all RLL can generate summaries and descriptions of ini-

plemented or evolved systems which are useful to both human and mechanical programmers modifying or
extending them. Further. since developments in the RLL are generally extensions or modifications of exist-
ing structure, descriptive and manipulative mechanisms and metaphors may be automatically extended to
new applications in new domains. For instance, the grammar and dictionary of a natural language interface
might be automatically extended to cover newly developed or assimilated concepts or relations, growing by
extensions based on those concept's derived semantics. Such an extensible language interface would explain
newly constriicted or proposed concepts by using terms and grammatical forms extracted from the coni-
portents which the concepts were developed from. In the same manner, the operations and presentations

U" lInf..r h:O ly. Eirisk,,'s exp)erience is priiwirily emb,-,died in thie numeric v,,rfhs awssigned t.. is sywniheized r

t2 rz , ri heuristics. We inight wish for a inore symb:lic description of the systems failures and successes as the
I,,.i. f, r *l- r fle~liv.e 11..difi-aI, I).

3

ARLO Ken Haase

offered by a graphical interface might be automatically extended to concepts and relations barely anticipated
in the interface's conception. The interpretation of what some generic operation (characterized perhaps by a
particular gesture or vocalization to the interface) on an object should do may be derived from the system's
description of it and of that description's underlying semantics. An interface which represents what ii is

interfacing to regularizes the user's access to a changing program, making the implementation and debugging
of self-developing systems - programs which grow - an easier task.

1.2 Representation as Inference

Before leaping into the question of how representations may be represented, we may wish to characterize
exactly what we mean by representation. While we probably won't find - and perhaps don't desire - a
complete definition, we would like some sort of intuitive grasp of what an RLL should - and shouldn't -
try to represent. This section presents a characterization of representation as a special sort of inference, and
briefly treats the consequences of this characterization.

1.2.1 Spontaneous and Deliberated Inference

In the beginning of this chapter, we slipped from describing At prograns to describing representation lan-
guages. But it would be hopelessly naive to claim that an Al program is merely its representation, what

issues have we glossed over in sharpening-of our focus to representation' Which part of what Al progranis
do is representation and which parts are something else?

Many, and perhaps most, of the actions of an AI program actively solving problems or operating in
some particular domain (including itself) can be classed as inferences connecting one partial description of
the world to an extension of that description. Such inferential actions further seem to fall into fairly distinct
classes: spontaneous inferences and deliberated inferences. Spontaneous inferences are the sorts of
inferences generally described with terms like inheritance or defaulting, while deliberated inferences are those
inferences to which we apply terms like hypothesis or counterezample. This distinction between spontaneous
and deliberated inference is one made by nearly all AT programs, but is it merely an implementational
distinction, oi is there a deeper semantic motivation behind it?

Certainly there is no such distinction implicit in the product of such inferences; spontaneous and delib-
erated inrerences seeni to share an identical character of belief or rational integration. The difference instead
lies in the act of inference itself, in the character of the action by which we extend our representations of
the world. If we characterize inferences as mental actions, spontaneous inferences might be looked at as the
bn:,c actzon: of a rational agent making inferences. This introspective notion places a psychological, rather
than semantic. motivation behind the distinction between spontaneous and deliberated inferences. While
a formal analysis of any given inference system may best treat the two sorts of inference identically. any
implementation or psychological theory must retain the division.

1.2.2 Characterizing Spontaneous Inference

Are there other characteristics -- besides the intuitive and psychological characterizations presented above
for the distinction between spontaneous and deliberated inferences? One iniportant clarification is that

th,. di~m iinct ion is not identical to the psychological distinction between coisciois anid uncnsciouz nent a!

4

A,%

ARLO Ken Haase

activities. Conscious and unconscious activities each involve both sorts of inference; conscious reasoning
might be those deliberated inferences which are verbalizable, but even this may be going too far. In any
event, spontaneous inference is aot psychologically subconscious activity; the knowledge that Clyde the
elephant is gray, while a spontaneous inference, is certainly not a "subconscious" inference.

One distinction which we might make between these two sorts of inference is that spontaneous inference
never builds large mental structures. If we believe that there are aggregated collections of ideas in the mind
- structures - then spontaneous inferences may complete, fullfilI, or verify these structures, but will never
construct them ex nihtlo. Deliberated inference, on the other hand, has no such restriction; indeed, a large
part of its operation is the construction of just such loci of assumption and assertion.

Our niames for the two sorts of inferences suggest another distinction which we should clarify. The ad-
jective spontaneous suggests that such inferences happen quickly, while deliberated suggests a more extended

process. While this is largely the intuition intended, we need to make clear when this inferential interval
actually occurs. Both spontaneous and deliberated inferences occur on demand; this demand may be of
physical neccessity or psychological intention, but the terms spontaneous and deliberated characterize these
inferences as actions carried out on demand, rather than as valid possibilities of action in a represented world.
Spontaneous - in our usage - does not mean that when I tell you Clyde is an Elephant you automatically

infer that lie is gray. It does mean that if I 7sk you what color Clyde is you can tell me quickly, without
needing to go through any complicated intellectual machinations.

*' 1.2.3 The Evolution of Spontaneous Inferences

Does deliberated inference become spontaneous over time? Is the distinction the same as the mechanomiorphic
*. distinction proposed between "compiled" and "interpreted" knowledge? Without a more precise definition

of such "compilation", it is hard to decide this latter question one way or another, but I suspect the answer
will be no. The process of compilation - as generally described in modern computer science - allows
programs to run faster by removing general character and making assumptions of context and reference.
Spontaneous inference does not rest on local assumptions of context or reference, as its execution may reach
across expanses of representation and structure. Taking the point about mental structures offered above.

* spontaneous inferences are "fast" because they do not need to generate or access intermediate structure

created on the fly.

On the other hand. the answer to the first question above - about deliberated inference becoming
spontaneous - is probably affirmative. The way deliberated inference becomes spout aneous involves the
change of representatzon; deliberated inference ii new domains works with structures formally representing

the domain and its principles -- the manipulative principles of algebra or the force-muotion axioms of hitting
baseballs; with time, however, the representation for the problem becomes specialized, as individual objects
and subproblems are placed in broad and powerful classes. It is by this process that deliberated inference
- referring to objects and general rules - becomse spontaneous inference -- referring to properties and

particular paradigms.

Finally returning to the topic at hand. an RLL is a lanaguage for describimg and implementing spon-
taneous inference systems. The classification of inferences as sponltaneous doezs not exempt thein from the lie
re Iri(tio,,S %e typi ally plae o , imfcirences. We still call demauid (sisteic . ;,cc,,un1u ihility. mIld robusl

% % ,
d" _ "" " " ' ' " % - ' " €, '3 - .' .';." "''.'"-.... ., ,-,x. .. . - . .- , -_., '

-o • -' , . . • 4" .' . . . N ' . '. #. - . . " ,,r W" ,d , m¢-- " ° ' ''€' d" , ,''' €S'

ARLO Ken Haase

non-monotonicity. As such it must offer facilities for maintaining what we demand from inferences with a
minumum cost in their execution.

1.3 What is ARLO?

As suggested in the previous sections, ARLO embodies a theory of how representation languages work.
But like any theory tied to an implementation, ARLO's carries its baggage of prejudices, leanings, and
restrictions. Most obviously, ARLO is prejudiced by an initial configuration as a frame-based language.
As initially configured, ARLO is a language for constructing data-structures - objects with properties --

which describe tile operation and performance of other representation languages also based largely on data-
structures. In turn, ARLO is itself described by its own data-structures and this description is referred to in
compiling and int, rpreting the descriptions of representations described in ARLO. ARLO's compilation and
description of a given representation references the in-core structures which define ARLO itself, rather than
being hardwired as LISP procedures. In compiling a given representation, ARLO is partially interpreting
its own description of itself.

How can such a self-referential interpretation process ever run efficiently? ARLO compiles the repre-

sentations it describes - including itself - into LISP code cached in quickly accessible locations in the
language's description. This caching of values allows ARLO and representations described in it to run effi-
ciently once compiled. A value dependency mechanism 2 assures tie accuracy of ARLO's cached compilations
by updating or retracting then when the descriptions front which they were compiled are changed. Because
of this bookkeeping, represent ations described in ARLO - including ARLO itself - can be dynamically
modified with relative impunity.

Greiner and Lenat's RLL-I is cast as a representational "organ." whose stops and settings can be
modified by a performer or user. mutating RLL-1 into a language with some set of particularly desired
features. ARLO, while supporting this sort of fundamental mutation by providing access to its representation
of itself, is primarily designed to support extension into new representational paradigms, without supplanting
its basic core. Instead of an organ, ARLO might better be perceived as a factory of synthesizer components
and patches. from which a user constructs whatever representational tools or paradigms she will.

The ability to mutate ARLO and languages described in it means that, in some ultimate sense, ARLO
is not really restricted by its intial configuration: ARLO could be used to define another RLL based on
assertioni rather than frame-like data-structures. Such a represent at ion, however, iiight not be acceptably
efficient because of the way ARLO compiles its descriptions: the way a frame system is compiled and
optimized ist very different from the way -ni assertion based language would be compiled and optimized.

ARLO could be radically mutated to do such optimnizations, bit I certainly don't clai m to have done this,
and in some strong sense such an accomplishment would be a wholly different language.

2A V l.ue dcpendency iech:tlisii, i :i gcneralizati, ,.f pr p-siti-,rtd dependency iecwdlis: lik. I),_v77 ,_,r 1McA7 . "

It keeps track ,f what eleu tnrts ,,f the envir nittent ., given envirnnent;tl die -ffect depends - .it. updtiung ,r -

uiid,:,iug that side effect when tlise elements are chatnged. A pr,_positi,.nal TMS is a specialized s,_rt A valuc- de-
Nw gh .' , i (1"1, A. 1irh]Perf,.r T i],- l~li ll (l l l' fill]; ti' Ih 'V ' j,141 tilt I rlil h 1 1 p ,~ue f 1J11 1- I n pr, -s, it i ll

6

%

'S'

5,*. . .. - ."," ,'- ** ..~ * ". " -, - -..- .- ,- - ".".5" . .5,. .'. ,? '' .:,: " ., -" ', ' "" " " "," "S" "

ARLO Ken Haase

1.4 Basic Concepts: A User's Introduction

ARLO is a frame based language.

A new user approaching ARLO in its initial configuration finds a classical "frame based" language much like

FRL [RG771 or UNITS !Ste79]. In this language, she may create, examine and manipulate data structures -
called units - which possess properties - called slots - to which are attached values - which are lisp
objects of various sorts. Each ARLO unit has a unique name relative to some knowledge base (a namespace
grouping many related units together), and its slots map symbolic names - each again relative to some

particular knowledge base - to single values. As in other frame based languages, the value of a slot is
sometimes computed on demand; a slot's attempted retrieval may compute a value (a default) for the slot if

one is not already available.

Defaulted values are cached and justified.

When the value of a slot of some ARLO unit is defaulted, the newly computed default is saved - cached

- on the unit itself. This caching allows subsequent references to the slot to return a value immediately,
without having to recompute a default value. Each of these cached values also records the justificatons of

its derivation: tile function used to compute it amid the slots referenced in its computation. When the user

later changes one of these supporting justifications, she finds that the cached default - typically listed when
the unit is described to her - disappears. When she asks again for its value, a new up-to-date default is
computed, and once more cached on the unit. The justifications of each of these defaulted slots are explicitly
available to the user: when she asks for a description of some particular slot's value, its justifications are
listed along with the description of its value.

Different slots have different semantics.

From the justifications ascribed to various slots, our user discovers that different slots derive their defaults in

different ways. For instance, she finds that time Telephone- Number slot of a person-description defaults through

its Organization slot, while the description's Home-Address slot defaults through time Spouse-Equivalent slot
attached to it. Further, in ile process of creating and modifying variou, units. she finds that certain slots
will accept only certain types of values and will attach to only certain kinds of units. The supervisor slot of a

person-description - for instance - accepts only other person-descriptions (determined by some inheritance
criterioii in sonie hier archy) for its values and attidlmeites.3 Wheu h. ;iresses ARLO's descriptions directly

from LISP (uiin a small reptloire oif top level hunctions for ac(essiz aind storing values ill slots) the user

discovers that tie way in which slot value are printed atd described alo varies from slot to slot: a Birthdate

slot may stwe its vaile ;i a mumliber In ,l sills 1900, but tIis vilie is always printed out in a more
humian-palatable form. Different lov in ADhLt). lit' (Olludes. l;we different -ernantics: different sensible
values and attachments. different imi~chanil-iii 1() defaultin., lifferoiot methods for describing their values.

etc.

These seniantics are explicitly described in ARILO.

3 Te tta,htnt. ,f. i t is tile unit it :Ttt:j - ,,. ' A . Hor ddressi 1 t f tit, ! i il Kris-Kringle, its

:It:I : I li.-].t . 11 i. t .A3i -Kri gle :,, !) , - "] 'A ' ,-

7

ARLO Ken Haase

When at some point our user wishes to know more about the semantics of a particular slot, ARLO reveals
its accessible underside. To get a description of a particular sort of slot, she need only examine all ARLO
unit describing the slot to see a summary of its intentions, mechanisms, and restrictions as specified by its
human or mechanical implementor. Each slot in ARLO. she discovers, is described by an ARLO unit. For
example, if she wants to use a "color" slot defined by some other user, she can describe the the slot-defining
unit tamned COLOR to see its complete specification. This COLOR unit details many aspects of the "color" slot:
what types of objects can be stored as colors, which sorts of units may have colors attached to them, how a
color should be described to a user or even preconpiled problem solving "cliches" for discovering or changing
the color of alt object.

Modifying this description can alter the semantics of the language.

But these descriptions are not merely one-way windows on the semantics of the language; if the user is
dissatisfied with some part of the definition of the slot, she can modify the ARLO unit describing it and that
its semantics have changed. For instance, having the definition of the color slot "in hand," she can extend or
modify different aspects of its semantics - such as how it is defaulted, restricted, or described - by using

established and familiar functions and utilities for modifying ARLO units.

ARLO represents implementation as well as semantics.

The ARLO description of a slot specifies not only its semantics - its restrictions and assumptions - it.
also specifies its implementation. Since the methods for storing or fetching the value of a slot are explicitly
described in ARLO, different slots may be implemented in different ways. For instance, some slots might
store their values in a high speed "connection nemory" [Hi]851, while others might store their contents on
a shared storage device across a local network. While the initial ARLO configuration uses only immediate
storage techniques (storing values directly on the unit data structure), this in no way limits its ultimate

*cmfiguration or organization.

ARLO also represents its own semantics and implementation.

ARL() represents not only other representation systems. it also represents 2tself. The slots and units used to
(lescribe the semantics of a given representation are themselves described in ARLO. This means that the unit
describing the To-Verify-Type slot 4 has a To-Verify-Type slot which is referred to whenever a To-Verify-Type

property i- defined for a slot.

AlHLO's self-repreentation is made possible by an elaborate and circuinvemtive bootstrapping process
that occurs when it is conipiled and loaded. li this process, slot-describing slots -- such as To-Get-Value
or To-Verify-Type - are defined as units with preemptivel) stored To-Get-Value or To-Verify-Type slots
referen(ed bv run-time ARLO. ARLO's bootstr,,pping pmocess sneaks around the self-referential interpre-
tation iiechanisin to prepare a pre-compiled runtime environment which refers to itself in compiling and
interpreting other representation languages, inchndiing the remainder of itself.

The ability of ARLO to easily modify itself allows introspective activities like self-modification, self-

4The To-Verify-Type st st.>res the fim ci.n which a: s['t uses t,. determine if a given value and attached unit are
,(reptnblr.

5,%

. %

It,,,A

ARLO Ken Haase

documentation,$ or self-explanation to be performed with ARLO structures. Not only may a program

written in ARLO examine or modify its own representation language, it may examine, extend, and modify

(with~in limits) the language in which that representation language is described.

* 5For instance, the docuiientation in the appendices was produced by AR-LO) examining and describing its own

de :criptj.:.n.

9

4'%

%'

ARLO Ken Haase

Chapter 2

ARLO's Implementation

Most Al languages are implementation towers; it is popular to diagram the construction of a given Al pro-
gram as a tiered construction of implementation layers resting on a fouidation of vanilla LISP. (Occasionaly
some clever wag also sketches in the machine language, microcode, logic circuitry, and semiconductor physics
beneath this LISP foundation.) Figure 2-1 is such a diagram for ARLO's construction, illustrating the foun-
dational role each level plays in the next. This chapter describes these components of ARLO's implementation
and the boostrapping process which consolidates them into a working self-referential implementation.

~Interface

.4 RL
Rflexive opertre

Cond itn and Error
System

U N I T 21 Volvo

objoeCt S Iot

Figure 2-1. The Layered 1mplementnti,:-u :, ARLO

1O

ARLO ~I-

But Figure 2-1 is not quite the typical "layers of implementation" diagram, its deti ls ,Iffef miore- i i i

simply illustrating levels of embedded languages. The horizontal arrows onl th urc ilidl' ale t~I!II..

phases of AR LO's deployment; each correspond,, to the boostrappivig of soiiiet- piti ~ii -1

representation. The first bootstrap is the definition of ARLO a: ;I represent atoiii lethtiii lattv*iI I'.
second boostrap is the completion of ARLO's type restriction systemt, w li i'uh lullt Ind t -

attraclinients of various slots.

As intimated above, a language implemented in AR LO reinains reasonia bl) t'tfiit I,% aIi 11W, it-1 -I-

piled implementation onl quickly accessible properties of its description %A iniig It i ie% I itIs it Ii. ,.I, 1

process as pushing ARLO's execution down tile tower of Figure 2-1. While a given eett iI i'- d.-

scribed at the level just above ARLO's definition, it is implemented and executed at thle more eth, .-ii rk
below it.P

The tower in Figure 2-1 has 11 distinct components, each of which plays a foundational ole i he

components above it:

1. The LISP underpinning

ARLO is implemented in LISP Machine LISP !WM82 for a variety of special purpose LISP~ M.achnes,-
The version of ARLO described here is ARLO Version 25,30. runitng inl Syniibolics Release 5)2 A H IJ)
uses a variety of facilities developed for the LISP Machine, p~roviditng (amiong other (apacitie-) spiecialI

capabilities for formatted output and "impatietnt i/o".

2. UNITS: A Data Structure Facility
LISP is used to implement a data-structure facility for creating and accessitig ntamed objects wit h inaitied
properties. These structures - called units after RLL - are implemented as fixed-lenigth hiash tables
which pair symbolic names to single values (which may of course describe sets of values). The tiatnes

of units and slots are organized by a namespace system which divides units into knowledge bases;
particularly, a knowledge base provides a many-to-one mapping from symbolic names to unit structures.

3. The Value Dependency Mechanism
Also implemented in LISP - or precisely, in Lisp Machine flavors - is a value dependency mccharizsm

for keeping track of dependencies between various properties and bindinigs of the LISP environmient,
particularly the values assigned to the slots of ARLO units. This nmechianismt is used by a deployed
ARLO to keep track of its chatnging defaults as well as its chianginig semantic definition. The value

depetidency mechanism is described in Section 2.2.

4. The Error Facility
No large systein is perfectly bug-free, atid ARLO's seif-referetitial itiplemienitationminakes catdhiig and

dealing with its internal problems a tricky task. Tracking anid repairing an internal AR LO bug is often
like tryitig to climb out of a sand pit; each exploratory mod ific at ion may shiift or shiatter- thle foiid at ioiis

benteathI you. Despite t his, AR LO ret ainis a degree of robu~t hesz thirotigh two inecliatisins: thle first is
the value depemidemicy mechanisni which etnsures t hat chiantges inl itiecliatisiis described in ARHLO fron

comiponient to comnpotnetnt ili t he implemnitationi; thle seotid is at rich t axotiotty of errors and(conidit ions
which are signalled when ARLO detects itself going wrong. TlieI errors (loscrib- cotidit iowi suchi as

obviously fatal recursionis, type conflicts, or violations of hoott rap teqitiretetts. ARLO1.'s ficilit ie: for
hiatihhitv and signalling these itittstal conlditionls i de'(-Irilod i Set tlt 2

-0'

% % % AN

ARLO Ken Haase

5. Reflexive Operators
- ARLO's self-reference is centrally embodied in a mechanism called reflexive operators. Reflexive oper-

ators refer to ARLO unit structure to determine how to operate on and access other unit structures.
When the description of an embedded language (or of ARLO itself) is compiled, it. is assembled into a
set of units whose interpretation by reflexive operators fullfills the intended semantics of the langauge's
description. Reflexive operators are an interpreter for frame like data-structure languages; the ARLO

language itself (interpreted by these mechanisms) is a compiler for turning high level representation
descriptions into structures for this interpretation process.

0 ARLO's Definition
These are the units which define ARLO's core, specifying a language - interpreted by reflexive operators

- which describes how the slots of a frame-based representation language default, restrict, and describe.
The detail of Figure 2-1 illustrates how the definition of these central units, skirting ARLO's self-reference
mechanism, extends below the level of reflexive operators at ARLO's first boostrap. The essentials of
ARLO's definition - how it describes and defines the slots of various representations - are documented
in Section 2.5.

7. The ARLO coder
ARLO's ability to define representation languages is used immediately in implementing ARLO's coder

- mechanism, specifying a language for describing the implementation of LISP functions. ARLO's coders
expand partial descriptions of common representation functions (inheritance, composition, type restric-
tion, etc) into completely specified LISP implementations. These tools for function-building are detailed

in Section 2.6.

8. The TYPE system
On top of the coder mechanism, ARLO's type system is implemented. The type system implements
a non-excepting generalization hierarchy for predicates; these are used to specify restrictions on the
attachments and values of slots defined in ARLO. ARLO's own initial description (which is used to
implement this hierarchy of types) refers to the type system by referencing the names of particular
types. The bootstrapping of the type system (the second dotted line on Figure 2-1) maps over every

unit in ARLO's description of itself and replaces all of its symbolic type names with now-assembled
type descriptzons. ARLO's utility package extends the type system into a class system for organiziig
units into overlapping description categories to which particular methods and heuristics are attached.

S The basic form of the type s,,stem is detailed in Section 2.7.

9. Archives and Layers
A represent ation language laguage allows a complicated program and represent at ion to be extended (or
to extend itself) over time: but if the program must be rebooted amd restarted eaci morning, its scope is
limited by its short lifetime. Archives and layers are a nechanism for wholly and imcrementally ditimipii g
ARLO representations and descriptions. The knowledge of a sophisticated program is a clynamiic ai(

intemconnected network of descriptions: archives and layers are tool- for preserving t hose itetworks be-
tweeli sest-ions and even (if any projects are sharing particilar representatioial mools) between domains

The implementation of archives and layers is documented in Section 2.8.

10. The User Interface

12

d .

-- W V V N

Ix-. .

ARLO Ken Ha-se

In the previous chapter, one of our arguments for the utility of RLLs was the expressive flexibility they
might bring to a user interface. ARLO's user interface explicitly accesses and refers to the semantic
description of the descriptions it is presenting, offering different displays and options based on the under-

., lying definition of what it is describing. ARLO's interface - operating through a variety of "interface

modes" - determines its presentations and presumptions by its own description of tihe concepts and
relations it is presenting.

11. Embedded Languages
Languages embedded in ARLO are finally built on the top of this edifice, taking advantage of the
descriptive and debugging facilities beneath them. Many representations built in ARLO (including
extensions of ARLO itself) do not build very high over the mechanisms which ARLO natively uses to
describe representation languages. These mechanisms - simple property inheritance, single hierarchy
type restrictions, etc - may be all a user needs for her application- but on the other hand, she may
easily implement more complicated representational constructs and abstractions at need.

2.1 Units and Knowledge Bases

Units are LISP structures which map named properties to LISP objects. Implemented as fixed length hash

tables, they can be thought of as a fast implementation of property lists. The implementation of units imposes
no semantic restrictions on what may be represented, outside of presuming that their exist objects with anmied

properties. The semantics of ARLO comes from the interpretation of descriptions constructed from these
units, much as the semantics of LISP comes - in a sometimes illusory sense - from the interpretation of list
structures. ARLO's units - like LISP's global function and variable definitions - are more or less global
definitions, but they are organized into many separate distinct knowledge bases.

Each ARLO unit has a name and is attached to a particular knowledge base, which is a structure
containing a collection of related units.6 Within this knowledge base, the unit's name is unique, though it
may possess other aliase: in the same or different knowledge bases. To support this, each knowledge base

provides a many to one mapping from names to units; but for each unit, one of these mappings is it's unique
true-name used (by default) in printing and archiving it.

A unit's printed representation looks like this:

{#>EXPLA1: SUB-DIVISIO:S}
where SUB-DIVISIOINS is the name of a unit in the EXPLAIII knowledge base. A user refers to a uniit in a given
knowledge base by using the lisp reader niacro "#>". For example. the expressi,m {#>EXPLAI' SUB-DIVISIO;:S}
refers to the unit whose printed representation appeared above.

ARLO's knowledge bases are arranged in a hierarchy from the root CORE kiiowledge base. as pictured
in Figure 2-2. All units defined in a knowledge base are also defined in the knowledge bases below it. For
instance, every knowledge base contains the units of the CORE knowledge base; simmilary, all of the units
defined in the EXPLAI: knowledge base will be defined in the THESIS knowledge base beneath it. Knowledge
bases mre a manespace ineclianisni and not a real "representational context" miecliaismi user code cannot
easil' refer t,-. "X ini the current context," but only to "X in the EXPLAIN conit ext".

';Kii wietge tb:, es -ire impleme eij rn t,,p -4 the ('cun:lli.mI LISP parokayf systein, :i t:cjlit, f.r i ini:tinimg ilijil -
i i:gIc. .lALI ' ,i:vir iielw

13

%

4 t.

ARLO Ken Haase

ARLRE

DNQU Ru e Explain o o o 7 -
Other/ ", / ",, Knoledgle Bla3es4"?t. / / , Ktvd@Mc

MIT Scribe Thesis PITstantora / "
/\

/ Synthetszed
User Def imed

vJ

-' Figure 2-2. ARLO's knowledge bases are organized into a hierarchy of name inheritance.

2.2 The Value Dependency Mechanism

,*- ARLO's slots are interconnected with a value dependency mechanism. When the value of a slot is defaulted
and cached, a dependency-record for the value is created referring to the dependency records of the values

accessed in computing the cached default. Each of these referenced dependency records is also given an
inverse pointer to the newly created dependency record. Later, if one of these referenced dependencies - an
"assumption" the cached default depends on - is invalidated, the dependency record for the cached value

is also invalidated. This invalidation decaches the out of date default, removing it from the unit structure
on which it was cached. The next attempt to access the value will then - in the absence of a cached value

- be forced to recompute a valid value for the slot.

The tracking of a slot's dependencies is quite simple. When a slot is being defaulted. the global variable

SLOT-BEI:G-DEFAULTED is bound to a dependency record for the slot being defaulted. Every slot access
occuring during the computation of this default calls the forii:

(ASSUI,!I!NG unit slot)

to make the dependency record kept in SLOT-BEI NG-DEFAULTED dependent on the current slotof unit. Thi- de-

pendency tracking may be disabled by the macro form AS-A-SIDE-EFFECT, which binds SLOT-BEITIG-DEFAULTED

to !IL for the dynamic scope of its body, thus protecting any default computations in progress from depen-
ldence on slots accessed in execution of its body. In addition, the call to ASSL.!IIIG is part of each slot's
description, so individual slots might be defined to not reference the dependency creating form.

Dependency records for slots are stored in a non-reflective network (i.e. siimply as named propertie, of
unit structures) defined in special knowledge bases associated with the knowledge base of the slot's whose
val~e h lih scribe. For instance, the dependencies for the #>CORE: To-Default-Value slot are stored -it

14

V..%

4.'%

ARLO Ken Haase

the # >CORE- DEPENDE':CIES: To-Def ault -Value property (not slot) 7 of tile unit whose #>CORE : To-Def ault-
Value slot they describe. A given slot's dependency record may be accessed by tile form):

(get -dependency-record unit slot)

which gets tile depenldency record describing the current value of unit's slot. These dependency records are

imiplemienited as flavoer Inst ances C o,113' which accept miessages defining an inivalidationi. justificat ion,an

descriptioni protocol.

2.2.1 Dependency Mechanism Protocols

AR LO's value dependency ineclianisin uses tile mnessage passing facility of flavors to define a protocol for
t(lie propogat ion of slot-valne invalidation, lin addition to this role, other protocols define ways of recording
justifications (whichl may later lead to invalidations) and documenting or describing thle supports of all

assumied or deposited value. These protocols, however, never refer to slots or units in particular and(is easily
extended beyond this;, while moust of tile nodes in the dependency network describe the values of slots, nianiv
do not. Somne, for instaince, describe value or function biindiings in thfe LISP eilviroillmnlt; others play critical
roles ill tile presenltationl - to the user - of tile slot network.

lil part icular, several graphical interfaces to AR LO hlave tile visual presenltat ionls of AR LO slot bininlg-

* w ~~iced nlit,* fit-l dependcenlcy net work runnIing bet weenl slots. tile appeara nce cof a g ivenl presentatio 11ill thle

interface thlen chlanges with the validity of the slcot value it represenlts. Tile graphical represent ationl a

flavor object -~-is definied ito hlandle thle inlvalidat ion prlt ocol for dependency records all(l thIenl conn~ected

ilto thle active depelldellcN net worli just like ally othlid node1.

The ivaliat inid just ific atioil protoicol is dlefinled by six miessages which are sent to and passed anioiig

niodes lin the dependency nletwork:

* IrVALIDATE-SELF invalidates a given (depenldenlcy record and thle dependency records which dlepenid onl

it. This is generally sent by anl outside foulciion'rathe1r thIani frontl ole dlepeticenicy record to anlot her.

* RETRACT-DEPENDEflTS inivalidates the dependentsz of a giveln dependency record. It (does this b~y senldinlg
all of its depenldent,, a SUPPORT -RETRACTED mnessage (withI itself as al r'llt) normlycusn i

dIep endenit value to be wi 1(one and~ spill i ii goff allot her wave of SUPPORT- RETRACTED nilessa'gtes.

* SUPPORT-RETRACTED is stilt to a (depenldenlcy record when olle of tile depeiideincy records it depend- oil is

iiivaildatedl Thle respollse of a cep'lellecy recorid to thlis illessagv will typically go and alter tile value

or assignineilt to which the dependency record refers. (This]in turn11 will typically invalidate thec nlode

It,1ivilg Ill, 'Ilessaige. anid spii (off hiew RETRACT- DEE::DEI;TS and SUPPORT- RETRACTED niiessages.)

0 ADO -DEPE *DE::T adds a dependency recordl (its Finlie a rgumnit) to thle records det ndl dl o by Ite record

Ili llC5 ; ge is senlt t I.

0 RE.:0V\E-DEPE2'DE::T rehlive.- a depenldenlcy record (Its- silgle argilllelt) fromIl tile records dhepenlded on l

- tile record t his mnessage is senit to,.

* REPLACE-SELF repla es thle depentleildy record it is sent to with I iew (lehelltlelndy re~tord (it<~ sIllgl

arguiuelt) Il order I, sidl.e ,fl.*(tf viAlie. flit- dlllltlV it" toid which receive- t his Illessage sloilli

kijow% wli i,e vihiue it I vfer I to, o t)(d.

I 7,T!iL;tii; -r' :k11 I 's i !:Ii L t hA Ai :41tj: &has. -i sp Itit flh(ll !

15

4

IJI*

ARLO Ken Haase

Dependency records also support a collection of messages for debugging and explanation of the values they

represent. There are four basic messages for describing dependency records:

* :DESCRIBE-CONTENT describes the value its record represents. This is used by all the descripton functions.

This description is sent to the stream which is the messages single argument.

* DESCRIBE-HISTORY describes the record it is sent to, as well as tie record that record replaced, thus

producing a history of the value the dependency describes. It takes a stream as a single argument, as

above.

* DESCRIBE-DEPEND-TS describes the other dependency records which depend on this dependency record.
It takes a stream as a single argument, as above.

* DESCRIBE-JUSTIFICATION describes where this value came from. If it was deposited by some person,

computed from some other slots, etc.

In the development of this protocol, it was neccessary to overcome the confusion of having two distinct uet-
works: the unit-slot network and the dependency network. Early versions of the protocol did all propogation

of invalidation through the dependency network, causing numerous problems with slots which wished to avoid

or affect their invalidation in various ways. The final solution was the separation of the SUPPORT-RETRACTED
and RETRACT-DEPENDEITTS messages by. reference to the unit-slot network. This harrier finally allowed the

dependency mechanism to avoid enforcing certain semantics on the unit-slot network.
.1

V. ARLO's initial configuration defines three basic sorts of dependency records: Slot-Computation-Records,
Slot-Citation-Records, and Slot-Boot-Records. Slot-Computation-Records are records of slot computations

* (such as the computation of a default) which referred to other slots and can be invalidated by the invalidation

of those slots' values. Slot-Citation-Records are dependency records which refer to a particular source and

attribution responsible for them. Typically these are references to users or text files. Slot-Boot-Records

describe slots defined before ARLO's critical bootstrap period; attempting to invalidate these records results

in a proceedable error. This warning sometimes avoids fatal self-modification by programs in ARLO or

unsuspecting users.

2.3 ARLO Errors and Conditions

ARLO uses tile lisp machiiies' coniditito sYstem Wei83j to define a taxonoiny of coiditions with %hich it
complains when it conies across unexpected or unusual situations. These conditions include both external

conditions (such as a particilar user or iachine not responding to requests) and internal cotiditions (suich as

fatal recursions or type coitflicts). Code using ARLO juay anticipate and catch these conditions and there

is a standard facility an ARLO codtr - for doing this pieemptive preparation. Futher. these conditions

- I, ., are defined so as to offer sta id ard ways to proceed from various situatiotis as well as pioviding pertinent

iiforniation to he use, when she is asked to handh tie cot,,dit io, (typically by etract to tHet LISP Machine

(lelugger).

III ordr I,. haliidle aild report errors effectively, ARLO) keep. tirck of v,arioi 1). Uf it, (yinanic
, il ,. ill,' illl'it lt t-s tatc (tli t 61 operatiotns cilu lcv a ;I. i, .-) i ' avs a;ilable it,

16

*1r

ARLO Ken Haase

the program in the variable .SLOT-ACCESSES ARLO uses this dynamic record for, among other purposes,
identifying when it is fatally recursing on some slot access. 8 .

The function where can be used to look at this part of ARLO's current dynamic state: It. produces a
trace that looks like this:

ARLO is currently:

4: trying to compute the Supervisor slot of {#>KYLE}

3: while getting the Supervisor slot of {#>KYLE}

2: while trying to compute the Hacking slot of {#>KYLE}
1: while getting the Hacking slot of {#>KYLE)

If you use the debuggers Control-M command to send a bug report on an ARLO condition, a version of
the above trace is included in the bug message. In addition, you can type the keystroke command Control-?
to get a where trace while in the debugger.

2.3.1 Anticipating errors

ARLO's errors signal not only unexpected conditions - such as type conflicts arising from sloppy generated
or user code - but also "unfortunate" conditions such as failed searches or absent users. For both of these,
the program itself might want to take action when the error occurs. In the case of unexpected conditions
(what we might call true errors), the program might wish to repair or banish a definition or description; in
tde case of unfortunate conditions, the program might wish to apply another method or simply assume a

harmless default. Harnessing the Lisp Machine's condition handling system, ARLO is able to answer both
of these demands.

Unfortunate conditions are generally conditions of failed methods, for which there are alternative re-
sponses or actions. In ARLO, unfortunate conditions are handled by "try and try again" functions, which
possess many distinct methods for performing their computation, moving from one to the next if an error
occurs. These functions are typically synthesized by ARLO coders 2.6 such as the METHODS or EXPECTIIIG
coders 2.7. When errors occur when these functions are executing, they throw out of the erring method and
advance to another or signally a final error if no more methods exist.

lVnexpected conditions, on the other hand, generally arise from ill-formed programs or descriptions:
their occurence generally demands the alteration or generation of relatively large programs or descriptions.
A sici. tlie react ion to such errors falls into the class of opera ions which we identified in 1.2.1 as deliberated
infereijes. Here we perceive t Dowerful pattern to the interact ion of spontaieous and deliberated inferences:
deliherated inferences arise from the failure of spontaneous inferences. It is only when our cached, compiled.
and conimmon methods fail that we turn to the carefully constructive process of deliberation in our problenm
solving. We must at least -- if we wish to build mind-like systems with ARLO - provide explicit classes of
these unexpected conditions which reveal precisely how the languages definition and description have been

strained.

61f ARL1O is 0,,ut t- perf.-.rm :a s1,,t ;acces, it first checks that it is not alre:,dy (further up the st:,ck) perf.,rii n

inig it-- if it is, it signals a Fatal-Recursion condition which may either be caught ly ARLO's -expect:ki..ns- ..r

'p-."ted -. th Iluser,

17

% % - %

1. " V': ' '% % % " % % ' " '" ' ' % % """"p.•'.% %.- L. % " "

ARLO Ken Haaae

2.3.2 Classes of Errors

A newly loaded ARLO defines a small collection of special conditions. As ARLO (and programs using it)
venture into new domains, new techniqus and new methodologies, this collection of conditions should grow
to become both more "worldly" and more tightly connected to the structure of ARLO.

All ARLO conditions inherit fron the condition flavor ARLO-CONDITION. Currently, the following con-
ditions are defined in a newly-loaded ARLO:

Fatal-Recursion is signalled when ARLO notices that it is trying to perform some operation which is
already being attempted. The user is offered the option to try the operation using non-reflexive sub-
primitives, or she may use the standard debugger commands to re-evaluate or return a value from the
fatally recursive call.

" Slot-11ot-Found is signalled when an attempt to inherit some slot through some relation fails- often
this error does not reach the user, but is caught and handled by ARLO itself. If it does reach the user,
she can proceed by either providing a value to cache locally, trying to inherit through another slot, or
looking on another unit for the value.

* Unacceptable-Value is signalled when a value being stored on a slot is of the wrong type for that sort of
slot. If she wishes, the user may tell ARLO to go ahead and store the value anyway.

* Unacceptable-Unit is signalled when a slot is being attached to a unit of the wrong type. As with
Unacceptabl e-Value, the user may tell ARLO to go ahead and store the value anyway. The abstract
condition flavor underlies both the Unacceptable-Value and Unacceptable-Unit condition flavors.

* Boot-Conflict is signalled when a slot which was defined before ARLO's second boostrap is being
invalidated. This will typically happen when a new value is being placed there. Going through with
such a replacement might cause a problem because such a slot may - in its boostrapped configuration -
implicitlydepend on itself. E.G. ARLO may have to reference the slot being invalidated in order to finish
retracting it or put a value in it. While ARLO is generally robust about changes whose dependencies
are explicit (and thus non-circular), all bets are off for pre-bootstrap definitions which ground ARLO's
self-description.

* Cant-Default-Slot is signalled when the value of a slot cannot be defaulted; this might happen if the
slot was never intended to default, or if all known methods for defaulting the slot have failed. Often this
may be caught by a prepared handler which then deposits its own "default" as a replacement value.

" Out-Of -I.Nethods is signalled when a try-and-try-again function 9 runs out of methods to try in computing
.)me value. The user can proceed front this by providing either a value to use as a result or another

met hod to try. Whien this condition is reported to the user, it describes the methods it has already tried
in computing the value. Often this error is caught by higher level try-and-try-again functions which
move on to other higher-level approaches when this is signalled.

'A try-and-try-a:gain function tries one method after Lno.ther to. compute a value, moving onto the next one if the
previ.-,us fails. ARLO supp,:,rts two s.rts of try-nd-try-g:gain functions: one moves onto the next ineth ,d only if
the current ntethd fails in sonme "expected way"; the (,ther is a blanket version f the first, that tries the next

nieth,-d %h.fen :iiy ,r v .f er ,i rcurs.

18

ARLO Ken HaaseVp

tUer-Not-Fotmd is signalled when a query to the user times out. This should be connected to ARLO in

a more intimate way, using a user model to decide when to quit, and being able to figure other methods

of contacting the user. (Such a model should also clearly incorporate some theory of etiquette!)

2.4 Reflexive Operators

ARLO's operation refers to the in-core description of its own semantics in such a way that when its description

is modified, its performance changes. This is done via a data-directed mechanism called reflexive operators.
10 Reflexive operators are functions of the form:

(<operator> <unit> <slot> . <remaining-arguments>)

(where <operator> is a reflexive operator) and working by applying the To-<operator> slot (a slot also defined

in ARLO) of <slot> to the arguments <unit>, <slot>, and <remaining-arguments>. For example, the form:

(Put-Value #>Jane #>Age 25.)

takes the result of (Get-Value #>Age #>To-Put-Value) and applies it to the unit named Jane, the unit named

Age, and the number 25. This application might then (for instance) verify the suitability of 25 as the value

for Jane's age or perform various dependency maintenance functions in addition to - or perhaps in place

of - actually depositing the value.

In the same manner, the form:

(Retract-Value #>Jane #>Age)

works by taking the result of (Get-Value #>Age #>To-Retract-Value) and applying it to the units named Jane

and Age. This will then - typically - retract the value on the Age slot of the unit named Jane.

2.4.1 Staunching an infinite regress

The one significant exception to the reflexive operator mechanism is the Get-Value function. The mechanism

described above runs into a snag when we try to define Get-Value as a reflexive operato; we would like

Get-Value to work like any other reflexive operator, evaluating:

(Get-Value <slot> #>To-Get-Value)

to get alt appropriate accessor, and applying this accessor to <unit> and <slot> to get a result. Unfortunately,

this approach ends up infintely recursing 12 ott:

(Get-Value #To-Get-Value #)To-Get-Value)

To get around this problem, Get-Value is only partially reflexive: instead of calling Get-Value to find a

To-Get-Value slot, it checks <slot> and its prototypes - a relation defined as part of ARLO's initial

configuration - for a To-Get-Value slot. A slightly cleaner version of this might look at the To-Get-Value

data structure itself for the function to use in its search, rather thtan using a hard-wired definition.

2.5 Representing Representations: The Details

luThis terihi...:,gy :riginates wit ARLO.

If the v:lue being dcp.,sited were inIippJ rpri;,tc by s-, e criteri.on, it might .ign:i LI errc:r istead of dep,siting

the v:lue.
]2 AR JC) isi:tly c, ,',., (f:,t:l r(.cursi.'is :id, ig :is :, err. r . ,ii .

19 *0

ZI

ARLO Ken Haase

The reflexive operator mechanism is an interpreter for structures specifying the implementation of frame-
based languages. From a partial description of a given representation language. ARLO generates - by
inheritatice from abstract specifications and tile sythesis of stasidard represent ation functions the preci:e
details of its implementation. ARLO's basic definition specifies the component . of this generation process-

inheritance iechanistis, automatic coders, descriptive constraint predicates, etc These primitive inecha-
iiisinis for language definition are themselves described in ARLO's "pre-configured" representation and are
interpreted by reflexive operators in specifying and compiling other representations. The primitive definition
of this core can thus be extended or changed - carefully! - to alter or expand tile capabilities of the

language.

ARLO's central core is bootstrapped by setting up an initial description - to be interpreted by reflexive
operators - for a simple representation language. Facilities like coders and more complicated representation
compilers are then described (and executed) in this representation langauge.

In ARLO's central core language, the primary inheritance mechanism - the mechanism by which
* properties are declared abstractly and then propogated to particulars - is Prototype inheritance. This sort

of inheritance generates defaults for values by searching along the Prototype relations between units. The
Prototype hierarchy is an exception-shadowing hierarchy of slot inheritance which keeps dependencies for
its inherited and cached values. While representation facilities built in ARLO define and use other sorts of
inheritance miechanisms, ARLO itself goes little beyond this simple mechaiiism.

When a user begins building a represent at ion in ARLO, she generally uses the Prototype relation to refer
to a collection of pre-defined abstract slot descriptions, from which the particulars of ARLO and its embedded

representations inherit. A newly bootstrapped ARLO has a small collection of these prototypical slots,
defining simple classes of relations whose implementation details inherit through the Prototype hierarchy;

extensions to ARLO may well define entirely new such classes of slots beyond these.

The most basic sort of slot is the Primitive-Slot; Primitive-Slot is a non-defaulting, non-restrictive
slot, and lies at the root of the Prototype hierarchy of slots. The Prototype relation is a primitive slot,

%.%, biut most other slots lie deeper in the slot inheritance hierarchy (the Prototype hierarchy) than this. The
%,. fiist level of slot-types defined beneath Primitive-Slot are Generic-Slots. Generic slots are the way ARLO

inplements generic ob)ects, an object oriented (as opposed to slot oriented) method of dispatching certain

slot and unit operations.

Beneath Generic-Slot. ARLO defines Typed-Slots whose values and attaclhtnents (the units they attach
their valles to) IlluSt satisfy certain predicates. Beneath Typed-Slot is defined Slot. tihe protoypical slot
referiqd to by most of ARLO's definition. Slot is a generic type-restricted slot which may compute "assumed"
valies for its assignients.

The fmictional properies of these slots are not - unfortuiiately -- automatically merged fron coni-

p tielti along tihe hierarchy, but are hand-coded into implementation functions at for each new type of
4lot, The To-Put-Value slot of Typed-Slot for instance. is hand-coded to operate generically, rather than

aI It at ic.a liv a(cquiritl the geteric wiature of Generic-Slot's modifiers. Of course, this hand-coding is only
i-vmcce~ss rit [bciisv they .-hare the functional rle of slot modification; the To-Put-Value slot of tie defaulting

Siot livel 1,t be spe(tally coded. since Slot define. no new modificatioii funct iotality and may just inherit

Typed-Sict,' To-Put -Value %it li t l 'inv 1g

20

i

-..-.- ,-.-- ,.-,,-:¢.,- -, %

ARLO Ken Haase

2.5.1 Generic Objects & Shadow Slots

ARLO inplements generic objects - as in SmallTalk IGR84: or flavors 'WM821!Can83] - with a mechanism
called shadow slots. In languages like SmallTalk or the Lisp Machine flavor system, the primary functional
operation is message passing, where an object is sent a message in order to perform an operation on or
with it. These languages are generic in that each object (or more precisely, each class of objects) has
local definitions for handling the messages it receives inl different ways. In ARLO, on the other hand, the
primary functional operation is slot access (though the slot accessed may contain the definition of some
functional operator), and the character of the operation is determined by the global description of the slot
being accessed. Slots which are generic, however, permit a unit to shadow their global definition with a
locally specified redefinition; these redefinitions are other full-fledged slot descriptions which supersede the
global defaults. Thus, particular units may redefine some slot's definition (where the definition is an ARLO
description) for themselves.

Shadow slots are implemented as a non-invasive extension of ARLO. By non-invasive, I mean that the
* implementation does not modify ARLO's reflexive operator mechanism but simply builds upon it. This is

done by having the implementation of a generic slot (as functions stored on the slot's description) explicitly
% check for replacement definitions of themselves oi tile the unit they are operating on. Most of ARLO's slots
* (and most of tile slot accessing functions offered to users) contain this explicit check, encoded by tile macro

Shado.:ing-Slot.

A generic slot looks for any "shadowed" definitions of itself by extracting its own Shadov-Slot-Slot
from the unit it is operating on. For instance, the Home-Phone slot might have a Shadow-Slot- Slot of
Shado'.'ed-Home-Phone-Slot. The Shado,.,:ed-lHome-Phone-Slot of any particular unit then contains the re-
definition of Home-Phone - if any - to use on that unit. Then, descriptions of people with unusual phone
numbers - overseas or buried in extensions - might have a Shadowed-lHome-Phone-Slot whose defini-
tion would make their numbers acceptable or accessible despite some assumed global standard defined on
Home-Phone.

2.5.2 Type Restricted Slots

Another abstract slot is tile type restricted slot. The type restriction mechanism in ARLO refers to types
defined in a non-excepting generalization hierarchy of predicates; the value and attachment (the unit a slot
attaches its value to) of a type-restricted slot are constrained by a pair of these types. (This hierarchy is
descriled in further detail in Sect ion 2.7.) The Data-Type slot of a type-restricted slot determiiiies what types
of values the -lot may accept ; its .akes-Sense-For slot determines what types of objects (typically units)

Sthe slot may be attached to. The type checking predicates of a slot's Data-Type and !N!akes-Sense-For slots are
merged into its To-Verify-Type slot; this value is a function of a unit, slot, and value about to be combined
which sirnds an error if either of the predicates fails. This error is proceedable, but of course such an action

iamy have daulgerous repercussions.

M,,-t of the slc,ts of ARLO's initial configuration are type restricted slots, constraining themselves by
I ,d'|, tii ,t t h' predicate generalization hierarchy: but the relations forming this hierarchy (iii theit recursi\e
1ruit) it'' I.- rileI and defined by ARLO. This circularity of refeitemc, is initially established when tile type

, , \ I 1 t-iii,1pp (Iv Ilit, Figme 2-1). a oajo, t II AHLff, ,,,opd.t ilo, ,, ,,l de,l,,l leiit

A* 21

al.. %* .~'A.

ARLO Ken Haase

2.5.3 Defaulting Slots

SLOT is the abstract slot first referred to by most representations built on top of ARLO. As well as having
type restrictions as described above, units inheriting fron SLOT have dtfaulting methods for generating absent
values. When no value for this sort of slot can be found directly on a unit, a default is generated by calling
the function stored on the slot description's To-Default-value slot. This. function i:- called on both the unit
being referenced and the slot being defaulted and returns the value computed and a truth-value (T or NIL)
to indicate tle success of the computation. 13

Often, the To-Default-Value property of a particular slot must also be generated by default; the To-Default-Value
slot of To-Default-Value first tries to get a LISP implementation off of the slot's High-Level-Defini tion
and failing this, ascends the hierarchy of abstract slot specifications (the Prototype hierarchy) looking for
a To-Default-Value slot to use. A slot's High-Level-Definition - if it has one - is an abstract function
description which may be implemented by a lisp coder as described in Section 2.6 below.

In the final analysis, the semantics of most slots built on ARLO's core (those inheriting from CORE SLOT)
are determined by the two components of ARLO just introduced: the coder mechanism which describes
how "assumed" properties are computed and the type mechanism which constrains the values of slots by
predicates in a generalization hierarclhy. Both of these modules are described in more extensive detail below.

2.6 The ARLO Coder %

ARLO implements a facility called coders for generating lisp code from high level functional descriptions.
This facility is implemented by a representation language - described and implemented in ARLO - for
describing LISP functions. Using this language, a user - or a sophisticated program - describes how partial
specifications of particular sorts of function are expanded into fully implemented lisp definitions. Coders

allow common representation functiont like property inheritance, network searches, function composition,
or value restriction to be gentrat,, from their functional specificatioi. Every coder generated function
begins with an ARLO unit which partially describes the function to be generated; the operational slots of
the ftinc!in description its lanihda-definition, documentatioii, etc - are generated as defaults from this

* ',leotipti,.~ lWheti . use.r Or prograni de1.1 a particular coder, lie is actualiy defining the way in which
(Crltiim s4t - s (it as Lambda-Definition or Documentation default for a parti(ular sort of functional
description.

Each time a coder iniplettents a particular ftmiction. it constructs a utit describing tite function; tle
LISP definition. d(,cmmtentati,t, amid iat of the futiction are then generated by referring to methods stored
on the Coded-By slot of the des(ription 'Te value of the Coded-By slot is also ait ARLO unit - a coder -
which has functional propertie, like Implementor, Documentor, or To-!same-Function. Coders - with these

'%, %

1
3 Tlis sec, nt ',lii' i-, - th ,,duI .'ud, r.litr;i, , f lJag}' NI, }l:n.' lll

€.

" '. " . % . . " ". '.. " "- ". " " .. '''* '% '' " "" ".." -' "-" " ." ". - ; - ''.''' '. J '. d''a% '7 -d" #%' t.-g- - -.

ARLO Ken Haase

relevant slots - are defined by a Def ine-Coder form:

(Def ine-Coder (Coder-name .descrtiton-pa rameters)
doeumentation-for- coder

Cfunction- name -specification .arguments-for-function)

documnentation-specification

body- spec ification)

Define-Coder constructs a unit named coder-name which describes how to generate functions of some
particular type from specified description-parameters. These functions are actually generated as appropriate
Lambda-Def inition slots for descriptions which are initialized with some given description-parameters. De-
scription parameters are slots stored on thle functions' descriptions, and it is by reference to these properties

of the description that the coder generates implementations, names, and documentation.

Each description parameter is either a symbol -~ in which case aii indistinguished function-describinig
slot with that name is created -or a list whose first element specifies a slot,,paramneter name, auid whiose-

remaining arguments are slot-value pairs to be deposited on the slot's description (perhaps affecting it's

implementation).

Function- Narne-Specification specifies how to generate names for the funict ions the coder genierates.

If it is a symbol (such as I.:ATRIX-J4ULTIPLY), each functioni naiiie is all itt-rated gensym (if tlhat symiibol

(e.g. 1.4ATRI X-1!ULTI PLY -7). If the specification is a lisp form, it is evaluated to produce eachi fiict in 1Ijam1e.
referencing thle description-parameterz of the coded function as free variables, anid thle functioni descriptionl
itself by the variable coder-name.

Arguments-For-Function is the argument list for each function the coder genierate-s. ARLO also knows

how to extract the argument list for general system functions not synthesized by ARLO, allowing operations
which use the argument list -such as functional composition - to be applied to functions defined by eithier

the user or other resident systems.

Doc ume ntation-Specification is a form which, accessing the description parameters and functioit descrip-
tion as free variables, prints documentation for the function to the stream STAIIDARD- OUTPUT.

Finially, bod 'u-specification is a lisp form ieturning the body formi of the function generated by the todem>

As with the previous struct ure generating forms. this form may reference the dlescription parameters and
functiotn description as free variables.

The Define-Coder form creates a coder desc-ription -- anl ARL Im)uit niamied rodcr-na,u whilch
detscribes how% to generate names. docuiettat ion, aii(l lamibda detimit on - for the(fiunct ions it I ollt It
also iumplemnts a generator funictijon, nanmedl oder- nani, whiichi constructs ;I fiiin t (ii descriptlin wAitI ill'

appropriate CODED-BY slot and w%,il diescript ion parameters from its arguiiwtt The fiiat ion dvfjihi, I lie
lanibda-defitiition -and(LISP (oipileil defitiit ion - - for t his funtct ion dve-cripm jolt, finially retumiig tilie

generated name of the function.

2.6.1 Representing Programs

* . ~The coder mnechanisimi was originally conceived as ati euiihryoii pool uivi ersi'ii of t lie plan -,: e lep'e-

st-ut at ion used III thle Prograi in er> A pprenitice projelt at MIT SR7 Vi. R w ":,t7 lH reptit ij tyia
IvJife ltitil fiijtcti'ii ill tIi') expl)if it av, tilet- 1;1 .f iiidelIe i inig "I tnlg ttl i'lfi~ .ARL()

'V 23

ARLO Ken H:tase

definitions is far more straightforward. Mutative systems such as AM and Eurisko generally modified LISP
functions by heuristically munging -expressions which encoded LISP definitions of relevant functions Tile
coder mechanism was designed to make explicit and accessible - iii an ARLO repleeilaion de.criptiois
of tile implementations of many of the system's functions and operations.

2.6.2 ARLO's Coders

Tile initial ARLO configuration defines 7 coders:

* Slot-Compos ition takes a list of slots and constructs a function which is their cosnpo:it ion For instatce a
composition of tile Father and Mother slots would be a function for extracting ones paternal grandmnotlher.

* Inherit-Through generates a function for inheriting through a particular relation.

0 MIethods constructs a composite function from a list of other functions, which may also be generated by
coders. The function generated tries each function - one after another - until one succeeds (returns
without error). This function is called a try-and-try-agam function, trying one method after another

until one finally succeeds, being careful about the accumulated dependencies of each attempt (it resets
the dependency tracking mechanism before each attempt.)

* Expecting is like M,1ethods, but the function it constructs only "tries again" if a pretediig telh,,d fail
in an "expected" way. Of course, if al unexpected error occurs inside of ail Expecting function. it iay
well be caught by other Expecting or Methods coded functions above it in the calling sequence.

" * Test is a coder which generates a predicate function which is the conjunction of it component functions.

* Inherits? is a coder for predicates which determine if one unit inherits from sonme other through some
relation. (For instance, if some person is directly above some other in some hierarchy.)

J • Type-Checker generates the function for verifying a slot's assignment -- its value and attachnent
from the slot's Nlakes-Senae-For and Data-Type properties.

2.6.3 User Defined Functions

The function description language used by the coder is also used to record user function definitiojin. The4.,
function DEFI:E has the syntax of LISP's DEFUI but builds al ARLO description with appropriate Lambda-
Definition and Documentation slots. The function AA is ail inline version of DEFI 'E which returns tile tamne
of tile function it defines.

Tile function GET-FU::CTr0:0-DESCRIPTID h bids or generales anll H) (les(ript i ,ii of tie funtion spec ified

by its single argument. Of course, if tile funiction was not appropriately deftined (Iw DEFI!E, A k, or sonic

attomatic coder). some information (such as lambda deftnitions) imay niot be available.

2.7 The Type System
The coder nechitnisin is tsed by ARLO in two roles: the iniplemienatiolls of "default in ftllictiolls," aid

the specification of ARLO's hierarchy of type. InI this second role. Coder are delhied which it llenieit

conintloti represent ati onal predicates (su(h as (hecking inilieit ance over variou relat ion-) and particular con-
}llct 1"ll. (f ilcll predicatesz. These generated pr'edicates are defined iln a qt, nc ralizattuleJ v rllhy, descellding ,

fr,,In l~v,,. pl v]rl(.,t,.- (-;11 flmedl IN la r, n llllll er.- 4,f object and lllits) iuln lo gle s'. lv(I Iloit palti(I u lal

24

% N4

"4.U

ARLO Ken Haase

predicate categorizations. Each of the predicates in this hierarchy is represented by a "type," an ARLO
description which consolidates a predicate function with associated functions for describing and operating
on objects which satisfy the predicate. ARLO's "type hierarchy" is the predicate generalization hierarchy
imposed between these type descriptions.

The type hierarchy also fills two distinct roles in ARLO's initial configuration. First of all, its predicates
serve to constrain the "sensible" attachements and values for particular slots; secondly, it provides informa-
tion about how to print, describe andI parse the sorts of values known to belong to certain sorts of slots. For
systems implemented in ARLO. beyond the definition of ARLO itself, it both provides constraints on the
generation of new slots frot old and serves as a hook for hanging type specific knowledge in the form of
inference procedures or heuristics.

The generalization hierarchy between types is determined by two slots: the Generalization slot and
the Specification slot, The Generalization of a type is the type upon which a type is built; a type's
Specification determines what additional criterion objects of the type must satisfy. The predicate for a
given type is hence the conjunction of the type's specification and the predicate of its generalization. This
principle yields a strict generalization hierarchy - any instance of T is also an instance of (Cnerazzatzun(T)

which simply supports operations like classificatton (quickly finding the types which an instance satisfies
by traversing downwards the tree of generalizations) or property clustering (automatically generating new
types from old by specializing around particular property regularities in their instances). In addition to
providing a formal framework streamlining these sorts of operations, the generalization relation is used to
inherit type specific properties such as display functions, description parsers, or inference procedures.

The type system presents its own bootstrap problems; it is described in ARLO (as as a representation
langauge for hierarchically organizing predicates and their properties), but is used (in turn) to constrain the
values and attachments of ARLO's own definition. As a result, ARLO's type bootstrap is more complicated
than its representation bootstrap (which was described in Section 2.5). When ARLO is originally defined
as a representation describing language, its type restrictions and constraints are represented by symbolic
tokens referring to type narnes. ARLO's second bootstrap - its type bootstrap - takes these symbolic
tokens anid replaces each type name in ARLO's self-description with a pointer to the actual type-describing
unit it refers to. The timing of this bootstrap is critical, as the type system uses both ARLO and the coder
mechanisi In iits dehiiition. and enottgh of these nieclianisins must be compiled and cached before the type
Nstell is i,npletel\ enalled

The package of ARLO iUtilities inpleniented for ('YRANO significatly extends tle type system into a
general crn.a:.fication system. This extenision includes a classtfier for placing instances in the hierarchy of
predicates (similar to tHit. L-C:'E classifier) and an iipleiientatiou of heuristic and inferential rules whose
"IF" coiponents refer to the type Iiterarchy. This innovation automati ally places rules in a generaliza-
tion/specialization hierar(iy frot which the' ma) he indexed to l)articular objects or tasks. A new variety
of autoniatic piedicate coter- acconipanies t his extension, perminitting tIie specification of constraints on and

between various sub-parts of descriptions.

-, 2.8 Archives and Layers: Saving Representations

25

w~.i

ARLO Ken Haase

Upon the edifice described in the preceding sections, users and clever programs build both new representation
schemes and particular representations within those schemes. Much of this construction takes place in the
sane manner as ARLO's own initial construction: through top level forms which side-effect the environment
to install particular representations and representations of representations. But much of the structure built

on top of ARLO s a dynamic stuff, constructed by interactive editors, database parsers, or thoughtful
* .programis. The preservation of these structures - defined in no particular file, but only by the accumulation

of definitions and mutations over time - is critical if any of our programs is to have a life beyond a sijigle
session or a handful of examples.

Archives and layers are ARLO's tools for saving out collections of ii-core units and their relations; units

and relations are dumped as data files from which they may later be restored. An archive stores a collection of
units and their connections, a layer stores the changes in such collections of units and connections. Archives
are used to store bodies of knowledge and the representation schemes (in ARLO, another sort of body
of knowledge) in which they are expressed; layers are used to store personal modifications or incremental
changes to these archives.

The implementation of archives and layers posed many difficulties, most of the arising from the circularity

and complexity of AR LO's inter-relations and dependencies. It is worth not ing that the Lisp Machine system,
not designed to support the structured preservation of partial environments, had to be significantly extended
to permit dumping of ARLO structures. This section, however, will concern itself only with the dumping

* "- abstractions used by ARLO, and niot the implementation particular details of their realization.

Like nearly every other process ill ARLO, the dumping of ARLO units and relations is data-directed.
The archive to which a unit belongs is a slot of the unit; every ARLO unit is given (or assumes by default) a
:-File-Of-Definition slot. For units defined by top-level LISP forms, this is the file in which the LISP forms

appeared: for other units, this slot is the archive the unit is defined in. A unit's archive is either an explicitly
deposited pathname or (by default) a logical pathname fo the form ''ARLO KBases. kb BI! >' , where kb

is the knou,ledge bast the unit was originally defined in. The *>My-File-Of-Definition slot is defined (as all
ARLO slot) to maiutaiii backpointers from archive pathnames to the units defined in them. Thus, when the
user ask- to duinp and archive (specified by its pathname), the set of units to be clumped are available as a
property of the patlinaine.

An archive is dumped through forms which bind - at load time - particular unit names t.o unit objects:

the refereince t,, each unit object is theit realized in forms Ahich access or regenerate the unit. Any given unit

reference is eitlher lcal or erttrnul: a local unit reference refers to a unit in tie current archive: an external
unit refers to a ult ill soine other archive. External unit references dump as a pair of unit lame and unit

archive; if - at load time - tile unit name is uibound, its archive is loaded. alidl the unit is theni directly

referenced.

Local unit references dunip as citlher per-file duimped-,,bjeci iiidices (supported natively bN the ZetaLisp
binary dumper) or as forms which regenerate tie unit. Il tlit- first case. a regehierating form has already
appeared in tlie file and the r-Stored object is directlv referelrcd, ill tlie, seconld case. tle reveuieratiig form
i.itSt 1e produced. ;I d tis" production is done Lv (allingt life #>::y -To-Dump-Self sl-t f the unit on tle

u'tnitq. [i, v.liie itii.d v this fiimatioi is a form which revenierates the unit and any attached portions

,f 1- ,isVl,qmvl 1 I",, iiti i.1 fliiictioi de (l iilii iunit i, i, 'euei-ti,l, it I f,. iitjti, - recom piled

26

'I-..•

"A ,, o .% .r.- ..- ,c,"" .""' ¢""""" ."" . - - .. . , " ,' . :/," , "" 7r..'""' 4 .- '"'' . . ,."Z""'

ARLO Ken Haase

into the load-time environment: if a unit describing an active process is loaded, that process might be
instantiated and started when the unit is restored. The #>MIy-To-Damp-Self slot of a unit need only take
care of reestablishing particular parts of tie LISP environment depetident oh, or depended on by, the. unit
dlunped. A collection of cationical dumping functions (such as DEFAULT-U,: IT- DU7.PER) provide regeneratio,

*i foris which handle reestablishing the ARLO environment connected to a particular unit. These forms lust
not only reestablish a franie with its connected slots, but must reestablish tlie units and slots those slots
refer to: when this reestablishment must reach between archives, it becomes insoluble il, general and difficult
in particular.

The problem can be characterized in the following way. Every archive has air tdg where it connects to

other archives: a given archive has certain assumptions about what lies over its edge, but it only has limited
information about the content of these bordering archives. When al archive is reloaded, it is not reloaded
in a vacuum, but must be established with its original edge connections intact. When inconsistent changes
have been made to multiple archives (an archive X refers to a unit in an archive Y which was never dumped)
the problem is insoluble: but if a degree of consistency is maintained, then the problem of establishing all
archive anlongst its neighbors requires dumping the archive to just beyond its edge.

Most of the responsibility for reestablishing the cross-archive network is carried by ARLO's dependency
network. Since this network specifies most of the explicit or implicit connections in the ARLO slot network.
rees,.,blishment of the dependency network reestablishes parts of the ARLO unit-slot network as well. By

- u-ilig references to depeiideilcies over a given edge, many of the problems of dumping partial environments
ale finessed or solved: "assumptions" of the network just outside a particular archive -- just over it- edge

are found or recreated when the archive is loaded. When this search or recreation fails (when an external
dependency is assumed that does not exist) the loader "fakes" the dependency aid warns tile user of the
temporarily patched inconsistency.

2.8.1 Layers

Layers are the way ARLO records incremental changes to its descriptions. Their mechanismn is quite simple:
it ',ie point (typically after all archive or set of archives is loaded) the state of a collectioln of archive,
is froze n into a "layer". Then, at some later point after a series of introductions, arid il (lifications to the
archives, the differences between the frozen layer aid fle current state of the archives is compulted, and
appropriate modifying forms are dumped in much the sanie manner as an archive In this process the datl
dirt-ct no111d cross-archive connection proceeds as above.

'p
27

*4%

k7,m : -M ,Z 4-*

6

ARLO Ken HaLISe

Chapter 3

An Example: Representation

This section describe a toy ARLO database of researchers and their interriations. It is part of the default
systenil, residing in the Inquir knowledge base, useful for testing and demionstration. The first section of this
example describes and explains what the code in the file looks like; the second is a script of an interactive
examlinat ion oni the LISP Machine -~ of the domini and its representation langauge.

* 3.1 Building Basics

The fir~t <1 Vp lit building a represenitat ion systei lin ARLO is to define the basic essential units, and relations
on) Which tilt. ijlividijal.s aldnl elatintis of your represent at i will build. If you are building onl top of law
AR LO, llit inhevril.-nce mecliaiiism von are likely to use is #>Prototype inherit ance; if you are using a systemn
built ont top of AR LO (for inst ance. -an Fl-L or K LONE clone) you may be using an entirely dlifferenit

niehai-n.Of cusif vou wi~h. Von) can ll implement your own inheritance schemue ill ARLIO! anid
use that.

Tit-- followitg cx tessioii- describe the prot otypical person, conistruct a unit describing the "person
tpe. and(build a prolotypi(i Al 4)1 fin whlich slots referrinig to people will event nal iiiherit -

(DefUrnt Person

(fescr~ptioli .h~ s the prototypical person

'aa 28

~%

.- . - .- * S - 'S'. .°' '~

iV - ;..W , ,-'i4 '~% '

i~...

ARLO Ken Haase

i

(DefUnit Person-Type
(Description

''This is a type satisifed by any unit inheriting from Person "')

(Prototype *)Any-Iype)

(General izati on #)Unit-Type)

(Specification (Inherits? $>Person #>Prototype))

(S>Function-To-Find-Interactively 'get -person-from-menus)

($>Function-To-Read 'read-person))

(Put-Value #>Person #>Ny-Specific-Typs #>Permon-Type)

(DefUnit Person-Slot

(Description

"'This is the prototypical slot which attaches to people '')

(Prototype #>Slot)

(Makes-Sense-For *>Person-Type))

The definition of the #>Person unit constructs a "placeholder" to which individual people descriptfi.s
will refer. Later, we may burden this unit with a variety of information which those individual people

descriptions will inherit of refer to. For instance, the #>Person unit may be used to shadow some slot
definitions in order to accomodate the restrictions and potentials of people.
#>Person-Type

is defined as a specialization of #>Unit-Type which requires inheritance -- via tile #>Prototype relation

- from the unit #>Person. The generalization hierarchy used for types is a non-excepting hierarchy of pred-
icate specifications. ARLO's utilities implement a KLONE-style classifier for this generalization hierarchy,

V determining which types in the hierarchy are instantiated by a given LISP object or ARLO description.

The #>:y-Specifac-Type slot of a unit is an ARLO type description subsuming all ARLO units inheriting
(via the #>Prototype relation) from the unit. #>Person-Type is deposited there as a forethought: if we P

had asked f,,r the #>2!y-Specifac-Type slot of #>Person without storing #>Person-Type there beforehand, an
appropriate type description would have been generated on the fly. One thing we will exploit #>Person-Type
for is defining the way references to people are parsed, printed, and described.

Finally. #>Person-Slot is a version of #>Slot which embodies a particular constraint on the units it may
be attached to.

3.2 Defining Slots

The following expression- define slots for the various appellations for individual people: thesze slots pieset
a vaie-tv f diff,.l.nt value defaltitg meclhalisms.

29

'p%
"S,

ARLO Ken Haase

(DefUnit Full-Name
(Description "This is the full, formal neae of a person
(Prototype OPerson-Slot) Attach to people

(Data-Type Oftring-!ypt) Accept strings
(To-Default-Value 'ask-user-for-slot)
(To-Prompt -For-Value

(.LA ask-for-full-name (person slot stream)
(format stream "What is the full name of the person described by a?"

person))))

(DefUnit Personal-Name
(Description "This is the informal name of a person.")
(Prototype 0*Persou-Slot) ;Attach to people
(Data-Type $>String-Type) ;Accept strings
(To-Default -Value

:The AA ma.cro - briefly mentioned on page 24 - internally defines
;an exte. iaM function constructing an ARLO description of the function at the same timle.
WN To-Generate-Personal-Iame (unit slot) ; Extract her first name

(if (Ignoring-Errors (get-value unit W)ull-llame))
(get-f irst-uord (get-value unit W>ull-Ilame))

(DefUnit Last-Ram
(Description "This is the last name of a person.'')

(Prototype CpPorson-Slot) ,Attach to people
(Data-Type #>String-Type) ,Accept strings
(To-Default-Value
(AA (unit slot) ;Extract her last niame

(if (Ignoring-Errors (get-value unit Wull-Ilsm))
(get-last-wiord (get-value unit WuFll-llaa))
"Random-)

The above are examples o. slots which compute their defaultS in different ways. The #>Full-Nane slot,
S for inmtance, asks the user for a person's full name if it isn't alreadly specified. The Personal-Ilame slot, oil

the other hland, extracts the person's first name from her full name if possible and otherwise defaults to a1

friendly solution. The ignoring-Errors form used in the dlefliition catches (lifficultie.s with inaccessible slot.;

or formnats, returning nil if any errors were encountered in the execution of its body. The #>Last-lame slot is

almost a copy of X>Personal-llame, extracting a last nie from thme #>Full-Name slot if possible and otherwise

defaulting to a random solution. IN both of these slots we see anl explicitly defined lambda-definlition, specified

instead of an automatically coded high-level description.

The u>:lakes -Sense -For slot for all of these units defaults from #>Person-Slot. and each accepts only

LISP sIriiuu fu~r 'almuts.

30

ARLO Ken Haase

3.3 Inheritance Mechanisms

The following slots illustrate how ARLO supports explicitly defined inheritance mnechanisins of various sorts.
(Deft~nit Supervisor

(Description "This is the supervisor of a person)

y (Prototype #>Person-Slot) Attach to people
4 (Data-Type #>Person-Typs) Chauvinist, but....

(To-Default-Value 'ask-user-f or-slot)

(To-Prompt -For-Value
(AA ask-for-supervisor (person ignore stream)

(format stream "Who is a hacking for?"
(get-value person #>Porsanal-Uszn.)))))

(DefUnit Hacking
(r.scription "This is what a person is backing on.")
(Prototype *>Persorn-Slot) Attach to people

(Data-Type S>Strxng-Type)

(To-Prompt -For-Value

(AA ask-for-hacking-slot (person ignore stream)

(format stream "WJhat is a hacking?"

% (get-value person $>Personal -Name)))
(High-Level-Definition

Default fromn ones' supervisor, and otherwise ask...
;(The character miacro #$ returns a DESCRIPTION of the

function whose namne follows it.)
(METHDDS (list (Inherit-Through $>Supervisor) *ask-uaer-for-alot))))

(DefUnit Working-in-Field

(Description "This is the field a person is working in

(Prototype *Person-Slot) Attach ito people
(Data-Type #>String-Type)
(High-Level-Definlition ;Another way tc(saiy it

(Slot -Composit ion (list *>Hacking $>Suprvisor))))

(DefUnit Wedging

(Description ''A monkey .,,rench in the works '

(Prototype #>Person-Slot)

(Data-Type #>String-Type)
(To-Default -Value (AA Uedge (un ol) (get-value un si))))

The first of the slots defined aibove is the #>Supervisor slot, which is used to default the values of
a varietN of otlier slots. The type restriction of #>Supervisor (lenltands that its value be another person-
le~c ri hi ii uniiit. since ot her slots will be looking at, its valuec with utn it accessing functions -to derive
thecir OxW n values,

'S 31

N N

'l~ARE

ARLO Ken Haase

The second and third slots defined above perform inheritance (or defaulting) in different ways. The

#>Hacking slot attempts to inherit its value by searching through the #>Supervisor relation, but if it, fails -
for any reason - it asks the user for the value. The #>H4ethods coder used to define this mechanism takes

its clauses and constructs a try-and-try-again function. (Try-and-Try-again functions are briefly described

on page 18.)

The #.orking-In-Field relation refers to one's supervisor for its value also, but if this fails, the entire

attempted computation fails. In addition, the *>Slot-Composition coder is not characterized as a search,

so the function it generates will be implemented somewhat differently. (It will not, for instance, signal a

#>Slot-lot-Found condition if it fails.)

Finally, the >wedging slot is merely there for purposes of demonstrating how fatal-recursion detection

works. Since the wedging slot defaults by getting its value, trying to compute a default for it will recurse

indefinitely.

3.4 Shadowing Slot Definitions

To demonstrate the ARLO mechani-m for shadowing slots, we construct two special units. The first,

0>ShadoY.ed- Hacking, describes how to find and store a shadowed definition for the #>HACKING slot; this de-

scriptions is another slot, defined to get its value by searching (with the LISP function Find-Value through

the *Prototype slots of a unit. To redefine the definition of $>Hacking for a group of units, we merely arrange

that they have as a prototype some unit with the appropriate #>Shadowed-Hackng slot. In this particular
example, we define a unit #>':.inner with a shadowed definition of #>Hacking which asks the user for the slot's
value, without first trying to inherit a value through the #>Supervisor relation.

(DefUnit Shado-ed-Hacking-Definition
(Description "A replacement definition for HACKIING '')
(Prototype #>Shado:.:-Slot)

;; Search through prototypes for a value.

(To-Default-Value

(AA Find-Hacking-Slot (unit in-slot)
'Looks for a replacement hacking definition

(or (find-value unit in-slot) Ohacking))))

(Put-Value #>Hacking 0>Shado:'-Slot-Slot *>Shado..ed-Hackxng-Definit ion)

K 32

y

% %..

.f .2_,

'5

ARLO Ken Haase

(DefUnit Winner
(Description "Somone who doesn't always follow their supervisor.")
(Shadowed-Hacking-Definati on

When we construct a unit with a #>Nly-name slot, the true name
of the constructed unit will be an enumerated gensym of the My-Name
slot (e.g. #>Hacking-O, #>Hacking-1, etc).

(make-unit (M'y-11ame '#>Hacking)

(Prototype #>Hacking)
(14akes-Sense-For (get-value I>.'inner *> ty-Spscific-Type))

(To-Default-Value 'ask-user-for-slot))))

As a result of the above machinations, any person descriptions which have a prototype of #>Vinner

instead of #>Person will use this alternate definition of #>HACKIIIG in place of the one originally defined at the

top level.

3.5 Building the data base

The process of creating "individuals" in this example builds on the slots and prototypes constructed above.
Currently, there are two standard ways to build individuals in ARLO. One may either call Def Unit explicitly

* from top level (the manner in which the slots above were created), or write support functions calling MIake-Unit
, internally to construct units with particular properties. For purposes of clarity and brevity, this example

uses only the first of these techniques, explicitly defining each individual person description at, top level.

The following DefUnit forms build a small database of people-describing units for an imaginary Al lab.

(DefUnit Calvin

(Description "This is a well knovin robotics hacker.")

(Prototype #>Person)
(Full-I;ame - Susan Calvin'')
(Hacking "Robots''))

(DefUnit Rodgers
(Prototype #>Person)

(Full-:.ame ''Robert Rodgers")
(Supervisor #>Calvin)
(Hacking "Emotional Analouge Robots''))

(DefUnit Charo
(Prototype #Person)

(Full -'ame 'Elizabeth Charo'')
(Personal-::ame 'Beth'')

(Supervisor #>Calvin)
(Hacking 'Cognitive Fundamentals''))

33

%-

.. %.- . . . , ,. . .. ,,.. ,... ,, . ,.- .,-.,

ARLO Ken Haase

(Def Unit Lee

(Prototype #>Person)
(Full-name "Pat Lee**)

(Supervisor $>Calvin)
(Hacking "Engineering Design"))

(DefUnit Kyle

(Prototype #,Person)

(Full-Ilame -Kyle O'Shea))

(DefUnit Arthur

(Prototype #)Person)

(Ful1-l!ame "Arthur Pendragon')

(Hacking "Fantasy Games '))

(DefUnit Alice

(Prototype #>Person)

(Full-!ame "Alice Adams"'))

(DefUnit Brian

(Prototype >L'inner)

(Full-Dame "Brian Walking-Song'')
(Supervisor I>Cbaro))

34

- N, %I-

ARLO Ken Haase

3.6 At the Console

3.6.1 Defaulting of Slots

(kb- got* 'inqui r) IChange the default knwledge base.
#(Package CORE IllQUIR 66156707>
(exianine-unit *),Kle) jLet's luok at Klie's description.
Description of the hILO unit {5)KTLE}:
Description The description of KYLE was not provided
Prototype. {5PEILSOZ}
Prototype Of
Sly Creator Ken Hiase
Mly File Of Definition: £11.0: SOURCES; INQUIi
Sly Time Of Creation: Saturday the twenty-eighth of July, 1984; 12:02.01 am
Full flame Kyle O'Shea
Mly Name MYKLE
Sly To Describe Self 81.00K-AT-UNIT
My To Print Self $*DEFAULT-UNIT-PRINTER

The slots of Kyle's description are tabulated above: slot names on the right,
value, on the left. Note that the values are printed out based on the semantics
of the slot. #M1Y-TIIE-OF-CREATIOII, while stored as an integral number of seconds
past New Year's Day 1900, prints out in a standard English format. Each unit

is also annotated with the file of creation and (if provided) a string describing
the unit in English. In Kyle's case, there is no description provided so a default
(describing the lack of an ascribed description) is provided. But the description

* above has no real information about Kyle: what he does, who he works for, etc.
So we begin our interaction by querying about these things...

Editing {5)KYLE} >>G Describe Slot Value
'.1hich slot of {8>KLE) 'vould you like to see'1acking

Here ive ask for the Hacking slot of the unit. Since there is not one there
alrcady (as une can tell fromn the description just provided) its value must be de-

* faulted using the function on the To-compute slot of Hacking. This function-
a., descrzbed by' its high level definition provided above - first looks through the
Supervisors of the person and then - if that fails - asks the user at the console
for ai value. But in order to search through the supervisors of Kyle it must first
know who his immediate supervisor is. Since the Supervisor slot defaults by
askingj the user at the console, we are asked...

'.:ho is Kyle hacking f'r7Pat

35 *

ARLO Ken Haase

Pat is the first name of "Pat Lee", the person we are referring, but since the
value of the Supervisor slot is of Person-Type, ARLO knows to read its value
with a function which looks for people under their personal nanes (as uell as last

names and their names qua description). It finds the unit named Lee, based on
our information, and caches it as Kyle's supervisor. Having this information, it

looks on Le's description for a Hacking slot, and discovers....

The Hacking slot of 43>ILE} is: Engineering Design

This in Justified by,

The Hacking slot of {f>fZ1 is Engineering Design

The To Get Value slot of {J8EACKING} is- 0'TTPED-DJAULTIIIG-GET

The Supervisor slot of {#I>LE} is: {>LM}
The To Default Value slot of {fNACKIIiG} is-
" 8>INHETII-THROUGH-SUPERVISOR-OR-AXLC :ASK-USER-FOR-SLOT-OI-ELSE
The To Get Value slot of {8>IT-DEFAULT-VALUE} is UTTPED-DEFULTIJG-GET

As promised, ARLO keeps track of the dependencies - the "assumptions"
of its derivations. In this case, Kyle 's hacking slot depends on his supervisor being
Lee, Lee's hacking of "Engineering Design," the mechanism b, which the hacking
slot defaults, and the implementation of that mechanism for defaulting. These

four dependencies are summarized by ARLO below. Note that if any of them were
to change the "assumed" value of Kyle's hacking slot would be invalid. Thus, in
the event that any of these values is retracted or otherwise invalidated, ARLO

can use its dependency information to make sure that the value just computed is
retracted and invalidated as well.

36

..

a.%

e1A

ARLO Ken Haase

3.6.2 Dependencies and Decaching

The dependencies ARLO recorded for the Hacking slot above allow it to keep

unit, as we can see from its description below:

Editing {9>KYLE} >>Describe jDes.cnbea, the unit.
* Description of the AR~LO unit {8>KYLE):
5,.Description The description of KYLE wasnoflt provided

Prototype {S>PERSOII}
Prototype Of: floss
My Creator: Ken Haase
My File Of Definition: £31.0: SOURCES; INQUIRULSP
My Tim Of Creation: Saturday the twenty-eighth of July, 1984, 12:02:01 am

I,,Full NUM: Kyle O'Shea
- ~ Hacking: Engineering Design [The hacking slot, cached.

Last Neme: O'Shea
My Nlame: #>KYLE

My To Deecribe Self: #'LOOK-AT-UIIIT
-. My To Print Self: 5'DEFAULT-UNIT-PRINTE.
* Personal Ulme. Kyle

Superveisor: {S>LEE}
[K~de's supervi.or, cached also We won't be a.sked for it again.

Editing {SKILE) >>Edit
Vhich slot of {#>KYLE) wcould you like to edit "Supervisor

j Now let's go look at Kil' spviso an hne his hacking slot. The

Echange should pro pogate back to Kyle.' 4

5%37

ARLO Ken Haase

Description of the ARLO unit {6)LEE}
Description The description of LEE was not provided.

Prototype {*>PERSal}
Prototype of

My Creator Ken Haase

SMy File Of Definition ARLO. SOURCES; INQUIR * >

Sly Time Of Creation: Saturday the twenty-eighth of July. 1981; 12 02:01 am

Editing JM)EE} >>Describe [Decrinbes the unit..
Description of the ARLO unit {S)LEE}:

Description The description of LEE was not provided.
.9Prototype {#)PERS0ON}

Prototype Of:
Sty Creator: Ken Haase

Sty File Of Definition: ARLO. SOURCES; I17QUIR * >

Sly Time Of Creation. Saturday the twenty-eighth of July, 1984; 12:02:01 am
full fleme Pat Lee
Hacking Engineering Design

T7he value which KpAe's Hacking slot defaulted from'

Sly l;ame M>EE

My To Describe Self: #'LOOK-AT-UNIT

Sly To Print Self #*DEFAULT-UflIT-PRINTER

Personal Name: Pat

.3.':Supervisor: {8)CALVIU}

Now we store a value in Lee's #>HACKIIG Slot. When reading a hacking slot,
whose value must be a string, ARLO knows to use the LISP readline function.

One might imagine that - if ARLO were connected to a natural language interface

the same sort of knowledge might be used to generate discourse goals.

t~hich slot of (#>LEE) would you like to eetHackintg

Vhat wcould you like in the Hacking slot of {S)LEE}'The Grateful DeadjA X.tnng ieread4

E Now we have given Lee a ncw hacking slot, and tkc value should have re-

placd the old one. We ask for Lee's description.:

38

'9.u

ARLO Ken Haase

Editing {3ILEE. >),Describe 'Desnbe, the unit

Description of the ARLO unit J8)LEE

Description The description of LEE v.as not provided

Prototype {> PERSO:}

Prototype Of

My Creator Ken Haase

Yy File Of Definition ARLO SOURCES, INQUIR >

My Time Of Creation Saturday the tw:enty-eighth of July. lg.8 12 2 1il :%n

Full :;am e Pat Lee

Hacking The Grateful Dead The new value

My Name $>LEE

My To Describe Self 'LOOK-AT-UNIT
M',y To Print Self #'DEFAULT-UNIT-PRIN1TR

Personal Name Pat

Supervisor {>CALVIN}

If tvt rythinq worked, our change in Lee 's Hacking slot should have inat,ah-

dated the default which ARLO computed earlcr for Ktile. We finish editing #>LEE

and return to editing *>KYLE:

Editing {8>LEE} >)Quit

Finished editing {iSLEE)

Editing {#>KYLE} >>Describe 'Deocrs&. the unit

Description of the ARLO unit {30KYLE}

Description The description of KYLE i.'es not provided

Prototype {#>PERS0!N}

Prototype Of

My Creator Ken Haase

:,y File Of Definition ARLO SOURCES, 1!:QUIR ' >

My Time Of Creation Saturday the t.enty-sighth of July, 1984, 12 02 o1 am

Full lame Kyle O'Shea

The hacking slot -- here before - ha.* disappeared

Last Name O'Shea

'!y Name #)KYLE

Yy To Describe Self #'LOOK-AT-UI;IT
My To Print Self *'DEFAULT-UNIT-PRIITER

Personal Name Kyle

Supervisor {#>LEE}

Now we ask for the Hacking slot again, and it will be defaulted as before,
ezcept that this time Kyle's Supervisor slot is alreadY known and doesn't have

to be asked for.

39

V" ".'," ,-"-

ARLO Ken fame

Editing {#>KYLE})>G -- Describe Slot Value
Which slot of {8>KTLE} would you like to eee cHaking

The Hacking slot of JI>KLE} is, The Grateful Deed

This is justified by:

The Hacking slot of {#>LEE) is The Grateful Dead

The To Get Value slot of {#>HACKING) is: #'TYPED-DEFAULTIIIG-GET

The Supervisor slot of {8>KYLE} is: {#>LEE}

The To Get Value slot of {#>SUPERVISOR} is #'TYPED-DEFAULTING-GET

The To Default Value slot of {>HACKINiG} is:
S> INHERI T -THROUGH- SUPERVISOR-OR- ARLO: ASK- USER-FOR- SLOT- OR-ELSE
The To Get Value slot of {#>TO-DEFAULT-VALUE} is: #'TYPED-DEFAULTIIG-GET

Editing {#>KYLE} >>Deacribe IDescnbes the unit..

Description of the ARLO unit {#>KYLE}:

Description The description of KYLE was not provided

Prototype {#>PERSON }

Prototype Of:

ty Creator Ren Haase
My File Of Definition- ARLO: SOURCES; INQUIR * >

Sty Time Of Creation: Saturday the taenty-@2ghth of July, 1984; 12 (12:01 anm

Full Ilame Kyle O'Shea

Hacking The Grateful Dead ;The new default i.- now cached.

Last llame O'Shea

Sly lame #>KYLE

My To Describe Self. #'LOOK-AT-UNIT

-My To Print Self: *'DEFAULT-UNIT-PRINTER

Personal lae: Kyle

Supervisor: {#>LEE}

And now let us set the world back to normal, changing Lte's Hacking slot
I once more and reinstating the old value on Kyle.

Editing {#>KYLE) >>Edit
WShich slot of {#>KYLE} would you like to edit'Lee

"'Lee'' isn't the name of a defined slot

We accidently referred to the unit to edit, instead of the .slot of Kyle we
wished to edit. Fortunately, the unit editor was cletver enough to woarn u.z of our

mstnke, but not clever enough to see through it.

40
_% %

'I' -

4ARLO Ken Haase

* Did you make a mistkeCY or 11) I'es

'':hich slot of {#>KYLE would you like to odit'Supervisor

Editing Js)LEE) >>Set

* ''hich slot of {8>LEE} .,.ould you like to set'Itacking

.hat .,.ould you like in the Hacking slot of {8S>LEE}?7Engineering Design

Editing {#>LEEI >Quit

Finished editing {i>LEE}

I The world should be back to normal now...

Editing (#>KYLE) >>G -- Describe Slot Value

~'hich slot of {S>YLE} tiould you like to see'Hacking

The Hacking slot of {I>KYLE) is Engineering Design

And indeed it is....

This is 3ustified by

The Hacking slot of {#>LEE} is Engineering Design

The To Get Value slot of {#>HACIIGj is. #'TYPED-DEFAULTIIG-GET

The Supervisor slot of {#>YLE} is {#)LEE)

The To Get Value slot of {S>SUPERVISOR} is UTYPED-DEFAULTING-GET

.'sThe To Default Value slot of {#>ACKING} is:

%~*>IIHERIT-THROUGH-SIPERVISOR-OR-ARLO ASK-USER-FOR-SLOT-OR-ELSE
The To Get Value slot of {#>TD-DEFAULT-VALUE} 2s. #'TYPED-DEFAULTI:G-GET

41

V.N

ARLO Ken Haase

3.6.3 Other slots

Editing {#>KTLE} >>Nev unit

11hat unit would you like to *dit'Alice

*Description of the ARLO unit {I)ALICE}

Description The description of ALICE to@ not provided

Prototype a6>PERSONI

Prototype Of

My Creator Ken Hams
*My File Of Definition ARLO. SOURCES; INQUIR)

*My Time Of Creation Saturday the twenty-eighth of July. 1984,. 12,02 02 am

Full flame Alice Adam

Last flame Adam

My Name $>.ALICE

My To Describe Self *SLDOK-AT-UNIT

My To Print Self: UDEFAULT-UNIT-PRIPTEU

Personal Vame: &lice

Editing {U>ALICE} >>G -- Describe Slot Value

*!hich slot of {I>ALICE} would you like to soeeWorking In FieldI The Working-In-Field slot - as defined on Page 3.5 is the slot compost-
tion of the Hacking slot of ones Supervisor slot. A., before though, it needs to
know her supervisor slot in order to default a value.

Iho is Alice hacking for'Rodgers

The Iorkiug It Field slot of {I)&LICE) is Emotional inalouge Robot&

And again, ARLO pro vides the dependencies of the computation:

This is 3ustified by

The Hacking slot of 48>RODGERS} is Emotional Analouge Robots

The To Get Value slot of {C>HACKINC} is 9CTYPED-DEFAULTI';G-CET

The Supervisor slot of {#>ALICE} is JSMRDGERS

The To GetValue slot of {8>SUPERVISORI is $*TYPED-DEFAJLTI::G-GET

The To Dsf ult Value slot of {9~1IGI-IL}is
#>THEVALUE-OF-THE-ACKI!G-OF-THE-SUPERVISOR-OF
Ths To Get Value slot of {S>TO-DEFAULT-VALUE) is UTYPED-DEFAULTIXCG-GET .N

Fmnally, we ask for Alice 's description again, to ,tf t/uzit the appropriate slot
has been cached on the unit descripitzon.I

42

%N

-Z *.*''.***.

'I' A-' I - W - W 17 W I W -W

ARLO Ken Haa~se

Editing {#>ALICE} >>Describe !De~cnbea the unst

Description of the ARLO unit {#>ALICE}

Description The description of ALICE ,.as not provided

Prototype {#>PERSGN I

Prototype Of

My Creator Ken Haase

,y File Of Definition ARLO SOURCES, INQUlR >

,.!y Time Of Creation Saturday the t.,enty-eighth of July, 198.. 12 '-2 '12 nint

Full l;ame Alice Adams

Last Name Adams

.,y Name #>ALICE

Yy To Describe Self #'LOOX-AT-UIT

"'y To Print Self #'DEFAULT-UNIT-PRIiTER

Personal !lame Alice

Supervisor {#>RODGERS}

l.orking In Field Emotional Analouge Robots [The value hwg been cached

Editing {#>ALICE} >>Quit

Finished editing {#>ALICE)

.4.

*V V-.

ARLO Ken Haase

3.6.4 Errors

Back to editing {e>KTLE)
Editing {U>KYLEI >>G -- Describe Slot Value

W!hich slot of (#>KYLE) would you like to seeeWedging

If you remember the definitton on page 31, this slot has a defintion which
"defauits" by referring to itself again. Attempting to get this slot from a unit will

recurse fatally if a value isn't already available. (In which case that value would

simply lie returned.) Lz fs watch sparks fly.

>>ARLO-Error I seem to be fatally recurhing on getting the tiedging slot of {#>KYLE}

(Vhile getting the Vedging slot of {#)KYLE))

Adescription of the current slot operation being attempted is always providedjIto the user when she is asked to handle an ARLO condition.

GET-VA LUE

Arg 0 (111-01T): {#>KYLE}

Arg 1 (OF-SLOT)- {8>tSDGIU1G)

a-A. (RESUME] Perform the operation using subprisitivea S

S-B. c-7 Print out the current state of ARLO's computations

g-C. (ABORT]. Return to the examining the unit {SSKYLE)

s-D Return to Dribbling Lisp Listener

a-E. Return to Lisp Top Level in Lisp Listener 1

->e-? Print out the current state of ARLO's computations.

ARLO is currently

3 getting the "sdging slot of {#>XYLE}
2 -.:hile trying to compute a default for the !!edging slot of {#)KYLE}
1 %rhile getting the 1 .edging slot of {#>KYLE}

This- is the trace produced by the !HERE function.

-(RESUME] Perform the operation using subprimitivres

The eub primitives, unfortunately, ,nerel ' return NIL if a slot dof.n't exzits.
Since Kylevi has no '.edging slot, the value NIL is computed asz one. But the

edigslot requires - as it is defined on pagf SI a string and ARLO complains
about this inconsistency.

44

ARLO KenHaase

>>ARLO -Cond it ion: The Wedging @lot cannot accept the value NIL

(it isn't of type STRING-TYPE)

Llhile caching flIL on the t!edging *lot of {6>KYLE)
8>SLOT-VERIFIER-FO-aDGlUG:

Arg 0 (UNIT) ($>KYLE)

Arg I (SLOT): {S>L1%DGING)
Arg 2 (VALUE): NIL

a-A, [RESUME] - Accept the value anyway
a-B, C-7. Print out the current @tate of ARLOs computations

a-C. [ABORT] Return to the examining the unit {#)KYLE}

s-D Return to Dribbling Lisp Listener

a-E. Return to Lisp Top Level in Lisp Listener I

->c-'? Printt out the current state ot ARLO's computations

ARLO is currently.

2 caching NIlL on the Wedging slot of 16>KYLE}

I while getting the W'edging slot of {U>KYLE}

-> [RESUME] Accept the value anyway

And finally we get a final result, after all of our running around in the error

system.

The Vedging slot of {s>RTLE} is NIL

This is justified by

The Functional Value slot of {S>DESCRIPTIDI1-OF-tEDGEj is

#(DP-COMPILED-FUNCTIOH vWICE 21016702>

The To Default Value slot of J6>tFEDCING is: I WEDGE

45

%~ .

- f -x -t

ARLO Ken Haaae

3.6.5 Shadowing Definitions

Editing {6)KTLE} >>New unit
What unit would you like to edit" Brian
Description of the ARLO unit {#>BRIAN}
Description The description of BRIAN was not provided

Prototype Of
My Creator. Ken Haase

My File Of Definition ARLO. SOURCES, IUiQUIR
My Ti"e Of Creation: Saturday the twenty-eighth of July. 1954, 12 02:02 am
Full Ila=a Brian Valking-Song

Last Rues. balking-Song
My fame: 0B)511

My To Describe Self; #'LOOK-AT-UiIT
My To Print Self: #'DEFAIJLT-UHIT-PIIiiTER
Personal Sane: Brian

Supervisor: {S)CHARO}

Here we ask for the hacking slot of Brian, whose prototype isq !!inner. As

defined initially, the Winner prototype. provides a diffc rent definition of Hacking

from the default. Precisely, it asks the user for the hacking slot directly, rather
than first trying to inherit it through the Supervisor relation.

Editing {6)BRIAN) >>G -- Describe Slot Value
t!hich slot of {6B,1RI1A} would you like to aeeHacking
Vihat is Brian hacki ng7 Intelligent Mystic Systems
The Hacking slot of {9)B1RIAN} is: Intelligent Mystic System

*This is justified by Ken Hase said so.

This citation - referring to myself, the person using the program - is recordedjbij a dependency record which is a SLOT -CITATION -RECORD, documented in Section

44

F4 6I

N

'5 ,~..

NI ARLO Ken Haase

Editing {#>BRIANI} >>Describe [Describes the unit.

Description of the ARLO unit {#>BIIAII}
Description The description of BRIAN was not provided

Prototype. {> ImINER}

Prototype Of.

My Creator Ken Haase

My File Of Definition ARLO: SOURCES. INQUIR * >

My Time Of Creation: Saturday the twenty-eighth of July, 1984; 12 02 02 atn

Full Name: Brian .alking-Song

Hacking. Intelligent Movie Systems The value has been cached.

Last llame talking-Song

M y Name #>BRIAN

My To Describe Self: #'LOOK-AT-UNIT

My To Print Self: #'DEFAULT-UIIIT-PRINTER

Personal Name: Brian

Supervisor {>CHARO}

Let's look at where Brian's description got its replacement hacking definition

- which asked us for a value directly - from. The shadowed definition of hacking

you remember - from Page 3. - looks on the prototypes of the unit it is accessing.

So we edit the prototype of #>BRIAII...

Editing {8>BRIAI} >>Edit

Which slot of {#>BRIAN} would you like to edit9Prototype

Description of the ARLO unit {8>.INER}.

Description. Somon. ,ho doesn't always follo: their supervisor.

Prototype. { >PERSON}

Prototype Of {#>BRIAN}
Nly Creator Ken Haase

My File Of Definition. ARLO. SOURCES, IIIQUIR - >

l Time Of Creation Saturday the tVventy-eighth of July. 1984, 1202:00 am

My Name # >1.II:HER

.!y Specific Type {U>WIN1NER-TYPE}

.1y To Describe Self #'LOOK-AT-UNIT

My To Print Self *'DEFAULT-UNIT-PRII:TER

Shadow:ed Hacking Definition {*>HACKING-O}

[And here is the shadowed definition of Hacking.

Kr'e can look deeper into this new definition of hacking by editing its descrip-

ton. Every ARLO slot, since it is explicitly described in ARLO, is accessible in

this way.

47

ARLO Ken Haase

Editing {.>sIIII} >>Edit
~Ihich slot of {SBRIAN} would you like to edit? Shadowed Hacking Definition

Description of the ARLO slot {$>EACKJI)G-O}:

Description The description of iIACKIIUG-O was not provided

To Default Value ASX-USER-FOR-SLOT

*Makes Sense For. t{C)'!IYWlER -TYPE}I

4 Data Type j#>STRIIJG-TYPE)

Mly Creator Ken Haase

Mly File Of Definition ARLO. l~ases, INQUIR-BIN NEWEST
Mly Time Of Creation Saturday the sixth of April. 1985, 9.11.58 am
Actual Got Value #'CIECK-VALUE

My ?I&=a #>HACXIIJC

Mly To Describe Self S'LOIC-AT-SLOT

My To Print Self #*DEFAJLT-UIIIT-PRIIITER

To Cache Value #'T'PED-CACHE
VTo Describe Value (LAMBDA (IGIIORE) IGTORE)

To Get Value. #'TTPED-DEFAULTI:;G-GET

To Help Find Value #*EVAL-R.EAD-AS-ESCAPE

To Print Value 6'GP.Il:TC

To Prompt For Value #'CUTE-PROSIPT-FOR-VALUE

To Read Value: f'READLIIIE

To Verify Type

8ILE IUQUIR SLOT-VERIFIER-FOR-HACKIJG-0

Editing {#>IIACKII4G-O} >>Quit

Finished editing {#)HACXING-O)

Editing {Ui'!IlUER) >>Quit

Finished editing f#>L1IflIER}

Editing {#>BRIAI.} >>Quit

Finished editing {I)BRIAN}

Back to editing {S>KILE}

48

ARLO Ken Haase

3.6.6 Modifying our language

Editing {6>KYLE} >>Now unit
Vhat unit would you like to editAlice
Description of the ALO unit (01LICEI:
Description: The description of ALICE was not provided.

Prototype {8)PERSON

Prototype Of.
My Creator: Ken Hlaase
My File Of Definition: ARLO: SOURCES; INQUIR * >
My Time Of Creation.
Saturday the twenty-eighth of July, 1984; 12:02:02 am
Editing {6)ALICE} >>Describe lDescnibes the unit..I
Description of the ALO unit {SALICE):
Description: The description of ALICE was not provided.
Prototype: {#)PD.SON}

Prototype Of:

My Creator Ron Haase
My File Of Definition. ARLO: SOURCES; INQUIR * >

My Time Of Creation: Saturday the twenty-eighth of July. 1984; 1202.02 aim
Full Nlame; Alice Adam

Last Nlame: Adease
My Nlam: *>ALICE
My To Describe Self: t'LOOK-AT-UUIT
My To Print Self: I*DEFAULT-UNIT-PRINTER

Personal Name: Alice

Supervisor: {e01ODGElS)

'iorking In Field: Eactional Analouge R.obots
M is the value defaulted earlier in the ezampie (Section S. 6. 3, Page V3)

E Now we will change the definition of how defaults for ',orking-In-Field

bnadfeen opued, ndo hinvalodifcto.ilmk rviu eiain oc

49

ARLO Ken Haase)

Editing {SALICE} >>Now unit
What unit would you like to editWorking in Field

Description of the A11.0 clot {85ORKIflG-IN-FIELDj

Description This is the field a person is working in
Prototype j #>PERSON -SLOT)

Prototype Of

To Default Value
*)THE-VALUE-OF-THE-HICKING- OF-THE-SUPERVISOR-OF
Makes Sense For {I)PE&SOII-TYPEj

Data Type {5>STRIJG-TYPE}

Sty Creator Ken Haase

Sly File Of Definition ARLO SOURCES. INQUIR >

Sfy Time Of Creation Saturday the twenty-eighth of July, 1984; 12,01 58 amn

Actual Get Value # CHECK-VALUE

High Level Definit ion $ 'CORE IVQUIR THE-VALUE- OF-THE-HACKING-OF- THE-SUPERVISOR-OF

My N ama 0>VO.K ING- IN-FIELD

My To Describe Sell A'LOOK-AT-SLOT

!y To Print Self *'DEFAULT-UNIT-PRINTER

To Cache Value 8 TYPED-CACHE

To Describe Value (LAMBSDA (IGNORE) IGNORE)

To Get Value $'TYPED-DEFAULTI1G-GET

To Print Value I'GPINTIC

*To Process Slot U DEFAULT-PROCESS-SLOT

To Verify Type #-CORE IIIQUIR SLOT-VERIFIER-FOR-'-ORXI1IG-1I1-FIELDIWe define the new defaulting method by using the automatic coder SLOT-COMFUS 1TI011.
Just a,, we defined #>HACKING-O, we define the new *waRKI11G-I1U-FIELD to inherit

from the #>HACKI71G slot two supervisors away.

so

7 I ,

ARLO Ken Haae

Editing {#>WiORKINJG- III-FIELD) >>Set Slot Value
.'hich slot of {#*'!IORKING-111-FIELD} would you like to edit' To Default Value

W1hat value would you like in the {8>To-Default-Value} slot of f{iL0ORING-Ifl- FIELD)
(Slot- Composition (list $>Hacking #>Supervisor #>Supervisor))

Editing J $>W~ORKING- III- FIELD) >>Describe

Description of the ARLO slot {xsi1.ORJIG- IN-FIELD}

Description This is the field a person is working in.

Prototype. {S)PERSOII-SLOT}

Prototype Of

To Default Value.
#>THE-VALUE-OF-THE-HICKIIUG- OF-THE-SUPERVISOR- OF-THE-SUPERVISOR-OF
Makes Sense For f{#>PERSON -TYPE}

Data Type. {#>STR1fl6-TYPE}

Sty Creator: Ken Hase
My File Of Definition: ARLO: SOURCES, IIIQUIR >

My Tine Of Creation: Saturday the twenty-eighth of July, 1984, 12:01:58 am

Actual Get Value: #'CHECK-VALUE

High Level Definition:

'CORE INQU 1K THE-VALUE-OF-THE-HACK11IG -OF-THE-SUPERVISOR- OF-THE-SUPERVISOR- OF

jThe new high level definition, all compiled.j
Sty Nlame *>'SORKIV;G-IU1-FIELD

Sty To Describe Self: #LOOK-AT-SLOT

My To Print Self: *DEPAULT-U11IT-PRINTER

To Cahe Value #*TYPED-CACHE

To Decache Value S*RIDOVE-VALUE

To Describe Value: (LAMBDA (IGNlORE) IGNORE)

To Get Value *'TYPED-DEFAULTI)JC-OET

*To Print Value #*GPRIIITC

To Process Slot *'DEFAULT-PROCESS-SLOT

To Verify Type

#-'CORE* IIIQUIR .SLOT-VERIFIER-FOR- IORKIIUG-1lU-FIELD

Editing J #>..'OR ING- IU.-FIELD) >>Quit

Finished editing {8>1.ORDK ING- IN- FIELD)

Back to editing {#>ALICE}

1;inc wt changed the way *Jorking- In -Field is~ defined, any values which
weedefaulted in the old way should be invalidated. Let's look back to Alice ',,

description to set if this is indeed the case.

4,14

ARLO Ken Haase

Editing {S)AL!CE} >Describe
Description of the ALO unit {82.ALICE}:
Description The description of ALICE was not provided.

Prototype: {u>PRS011)

Prototype Of

My Creator. Ken Has@.

My File Of Definition ARLO SOURCES. INQUIR >

My Time Of Creation. Saturday the twenty-eighth of July, 1984, 12:02:02 am
Full Njan*: Alice Adam

Last flame Adam
MY Nlam*: #>ALICE
My To Describe Self: #CLOOK-AT-UNlIT

My To Print Self: #'DEFAULT-UNIT-PRINTER

Personal N ame: Alice

Supervisor. {S)RODGERS}

LAnd Wh cached tVorking-In-Field has indeed disappear'ed

Let's regenerate it.

Editing {#>ALICE) >>G -- Describe Slot Value
Llhich slot of {S>ALICE} would you like to see? Working In Field

The Lorking In Field slot of (#>ALICE} is: RobotsIYou can see from the justifications of the value that it did the right thing,

looking at Rodger's supervisor and getting her Hacking slot.

This is justified by:

*1The Backing slot of {S>CALVXI11 is Robots

The To Get Value slot of 1#>HACXIIIG} is: $CTYPED-DEFAJLTING-GET

The Supervisor slot of {8>RDDGERS) is {e>CALVIIU)

The Supervisor slot of {#)ALICE} it: {#>RODGERS)

The To Get Value slot of {6)SUPERVISDR) is: #*TYPED-DFFAULTING-GET

The To Default Value slot of {3)IORuING-Ifl-FIELD} is:
I)TIIE-VALUE-DF-THE-HACKIlG- OF-THE-SUPERVISDX-DF-TEE-SIPERVISCR-OF
The To Get Value slot of {#)TD-DEFAULT-VALUE} is: CTYPE-DEFAULTIIIG-GET

And finally, we check that the value we have generated has been appropri IatelyIcached....

52

r X

ARLO Ken Hiise

Editing {U>ALICEj >>Describe

Description of the ARLO unit {E>ALICE}

ThDescription The description of ALICE was not provided
Prototype j*>PERSON)
Prototype Of

My Creator. Ken Haae

NMy File Of Definition, ARLO SOURCES, INQUIR.>

My Time Of Creation Saturday the twienty-eighth of July, 19.1 12 02 02 am

Full Name Alice Adams

Last lasms Adams

My Name #>ALICE

My To Describe Self. *'LOOK-T-UIIT

My To Print Self I'DEFAULT-UNI!-PRIINTER

Personal Name. Alice

Supervisor {#>RODGERSI

Jeorking In Field Robots
lAnd, of coursqe, the value is cached again.

S5

1, 11 S

ARLO Ken Haase

Chapter 4
An Example: Introspectioni

This chapter describes all automatic explanation system - implemented in and for ARLO -- that examines
a collection of ARLO units and generates a structured English explanation of them. These units would
typically describe some particular domain or embedded representation language, and be organized to aid
users or programmers introducing themselves to the domain or language. The system analyzes a collection of
units by trying to extract their salient features as an organizational focus for its explanation. Unfortunately,
since the text it generates is primitively template driven (currently), the system does not - at this time -
use these extracted features as the focus for discourse or individual explanations.

This is an example of the sort of general self-referential facility which users may implement in ARLO.
With something comparable to this explanation system, a user need merely point at some collection of
units and ask "Explain this" to acquire an organized explanation capturing whatever special 'observable"
structure the units possessed.

4.1 Explanation Structures

The explanation vstem takes the collecti-,n of units handed to it. and generates another set of units called
an ezplannton structurt describilng them. This structure is a hierarchy of explanations, each level of which
partitions the set of units over one of a number of possible relationships. These possible relationships are the
possible structural slots of a given explanation, and defaults to tie union of a collection of system defaults
and the slot descriptions in the set of units being explained.

The explanation process takes the set of units being explained aird generates a partion of it for each
structural slot. The resulting partitions -- one over each structural slot/relation - are then compared,
aid the slot whose partition contains the largest subgroups is selected as the focus of the explanation. The
intuition thIis supports i- tiai the organizational focus for an explanation of some collection of uinits should
be the relation which organizes those units into the biggst "chunks'. If a user doesnr't like the partition chose
A ol 01 level n u,} , .h. ()w h .xpl;t ,io, siructtire can be (irectl) altered to fotcus ol another divisive relation.

'54

%.% % %
% r AL%,

ARLO Ken H Lase
6

For each of the subgroups in the partition selected, a sub explanation is generat -. whose relevant unit
are the elements of the subgioup, and whose structural slots are inherited from the original explanation.

modulo the slot part itioned over. The explanation mechanism then recurs on tle-c sut, explanations, s1oplitg

when the :ctton szze the niumber of unit- being explained by a given chunk of structure -- drops below

some explanation-wide t hreshold for specialization of sect ions.

The explanat ion st ructul produced bN this process may theni be passed to a text-generator. a graphi(al

exploration environment. or even a theory-making mechanism !rying to classify regularities among generated
or accumulated ARL() structures.

4.2 Textual Generation

Text ual generation from the explanation structure currently produces organized and formatted 15 output,
appropriately sectionized and structured so as to produce readable, structured output. On both the level
of describing individual units and organizing explanations into sections, the documentation process is data-

directed by reference to descriptions in ARLO.
For individual units, their english explanation is provided by calling a LISP function on the unit's

#>.7-Scribe-To-Document -Self slot. which is inherited (by default) over the #>Prototype relation. (Of course

thiis hieritance mechanismn n ay be ,hadowcd arbitrarily.) These inherited description functions will produce
useful for luma consut plion -- descriptive text. Slot definitions, automatically coded LISP functions.
ARLO co,rs. and user defined functions are all described in different ways so as to provide appropriate

iufornation to the user. In a more advanced form, the documentation system might take into account

interests of the user, information already related, and "trivial" aspects of the description (for instance.
expected colors, planets, languages, etc).

For every node in the explanation structure which has a relational focus - which partitions a set of
umts over -ome particular slot - the manner of sectionization (determining section titles, order of sections,
discours restrictions of sub-sections. etc) is determined by the slot being partitioned over (taken as the

organizational focus of the explanation). For instance, relations which are posited by the user as hzrarchical

iate or(dered into sections by a breadth first enumeration of the hierarchy they define. Other slots may

organize their documented partitions on ages, execution speeds, size, or frequencies of appearance of their
associated values.

4.3 Graphical Prosentation

The explanation structure generated by the system can also be hooked up to a graphical interface for

examininv te-ted structures. Particularly. ARLO's generated explanation strutlure has been lioked up

to the Information-.:aldo. a gestural interface for inanipulatitg abstract objects. in an information qiaf

This informiation space is coiistructed of interconnected rooms containing objects with various properties

15 The text produced is either f-riatted for he terminal . r (if going 1. a file) for s_,nie apprpriite text frmattiin!g

pr-gr, mt.

1 ' '..ld ini:igire the ,is .very ;f sucl relati,,na pr,-,perties (like beiig hier:,rchic;l) heing made by -au ii el-

ligeiit pr.,gram generalizing ft i1, examples. ICli:i83: describes a system which does iusl this s.,rt ,f relmi,,nd
. .: ,i n frl'ii (1,!ij ' th "w irl'".

55%

,..

~ ' ~ ~ .-- :. *..* *~h~**~* -' % -. *** ~'%
-. 4 V ~ ~ **~ *.' *,.* . .

ARLO Ken Haase

UruiU with a Prototype slot of fO'?ERSON)

DOoor To As £jalasot,o- Of The louir Cxamals.

its organized bi Soor-sor

DorTo Un.,so Not Classifiable &P ottouaw..ri (def load Is Th

DOow To Units With A Swiaam..mr Slot Of Nil

, N. e~Joor To Units lith 8 Supervsr Slot Of 03-Oeolo

Doo To Uhits With a Smavivor Slot of A"(mw)

Uniu~Se~uo wiha ueriordt f.)CLV4

9 ary Dowo uits Wiuoth. rtg"So fCm of)

itsswih Sueriso ao ~twuvsr {D)CAL iN) dI h mmeebs =1)so

*NIL

.44

W-pm

O* ou 40U 4 0 to issomictta

id imoosa, Pwie I

Figure 4-1. I'sng the 1nf--rinati-:'n Waldo in the INQUIR iiuteuin structure.

4

ARLO erHAL:S,

arid powers. A user wields tire iniformrationr waldo to, explore this network of roomrs aidI(mranipulate t heir

content s, miov inig frorm platce to place aid(descript ion to descriptiont by plscallY Imm redirate Vestmni anrd

action.

A irset rurovts Ian~rd shaped grip across a fiat surrface to move a hand ott tile s(re, and ["fDtrr~t i

* waldo' exist inc III arn abstract "iliforilat roil space" fronm locatioun to locar lol. St lized grrrie f grasphig,

poInt ittv or- squIevzirig are, tetecreti by tite grip andtt cause tire hrandi om tile scren to til;iiplit. UtIII(olijet t

it is Iovirig arirotg. To exarrirtie air A RLO) descript ion with tire itiforrirat ion wAaldo., Noil luCreI 1)pik rip) tire

* roll-shaped descript ion arid squeeze it: its relations leap out fromr its bodN: to retract a relat im'l, Noll till o.1t

tile label attachiing it to thet description; to miove fronm on)e roomi to allot her. simpOiN 1)t NurIrj haiid r itrugit

artI open door. arid tie new room opens itself up oil tire display. This gest ural it erface to, AR iA,) IS tied

as tie basis of art explanation-based browser for ARLO structures. Struct ured explaniatiotns of collect itis

(if AR LO units are used ill tire designi and construction of tnulti-room museums portraying andi describinig

hem.

Tire explaniation structure produtced for ARLO descriptions can genrerate a mnuseunm of tie unuits ex-

plainied: this imrseunt Colisists of a network of roomis reflecting thre connrectionts and groupings of tire expla-

* h~~~lat it st rrcr t A tiser expioriig sonie part icrular irmpleentaitioni or repre ,elutatiotr withi tis facility canl

li~c spat ial rrret aphiors t. organize her uniderstarndirng. InI a more advanced form, a sophisticated iterface

Would deiviWl tire uittiserum '%ith itrie explicit goal of providinig such nietaphrors and(rimieiolic arraitgerrs.

- ~Figre 4-1 siiov4 tire miusreumi nt erface beinrg tnsed to explore thre INQt:R1 kirowledge base cf tiltpeyin

* examrple.

- 4.4 An Explanation of the INQUIR system

The following is an autormatically getrerated explanratiotn for tire INQUIR example of tihe previous chapter-

It was produiced by applying tire above explarnationi system to the itt-core imnplemnttatiorn of tire .NQfVIR

systemn (determined by all of tie ulr niti tire INQVIR krnowledge base).

These units are best organized by tire Prototype relationi.

4.4.1 Units without any prototype.

Personi is a protypical person description iii the "INQUIR" knowledge base. This is tire prot otvpicai

-- personl.

, 1.-t.2 Vnils witli a prototype of Hacking

Hacking (as dieflinedi by HACKIt!G- 0) is a slot which accepts values of type String Trype aiid irakes seirsi
frI illii of tv p, "lWm r Typt. Tire descript icon cf H ACKING-() was trot provided. Its valtre defailts 1,y tire

furict in .A RMI)Qi STION'-G, wich:

* Ask th(?itr aI qurstort Illy.

(FORMAAT QUER.I() -What 2ns a hackung onz'" (GET- VALUE U'NIT #>PERS0::AL->A>1E)

1.1.3 l1111 wl~ a*~ h rolot.vpIe of Hand Coded Function -

Ti.- tlt 21,1- io),.N~tzii tihe Prototypie ru-ia t ii.

N !57

-4%

-4%

ARLO Ken Haase

4.4.4 Units without any prototype.

Person is a protypical person description in the "INQUIR" knowledge base. This is the prototypical

person.

4.4.5 Units with a prototype of Hacking

Hacking (as defined by HACKING-0) is a slot which accepts values of type String Type and makes sense
for units of type Winner Type. The description of HACKING-0 was not provided. Its value defaults by the
function ARLO:QUESTION-6, which:

Ask the user a question by:
(FORMAT QUERY-1O "What is a hacking onf"' (GET- VALUE U7NIT *>PESOIAL- NAME)

4.4.6 Units with a prototype of Hand Coded Function

DATA-TYPE-GENERATOR is a user defined lisp function which has an argument list of (UNIT SLOT), and is
documented as: "Looks through the prototypes of a slot for its data-type".

DEFAULT-DESCRIPTID1f-GE!IERATDR is a user defined lisp function which has an argument list of (IN-UNIT

IGNORE). and is documented as: "This generates a description fxcus(." .

FI:D-HACKI2!G-SLOT is a user defined lisp function which has an argument list of (UNIT IN-SLOT), and
is documented as: "Looks for a replacement hacking definition in a persons prototypes.".

GENERATE-EXPLAIATIOIN-TITLE is a user defined lisp function which has an argument list of (EXPLANA-

TION IGNORE), and is documented as: "Generates an title for a given explanation."

TO-GEI:ERATE-LAST-.AOME is a user defined lisp function which has an argument list of (UNIT IGNORE),

and is documented as: "Extracts a person's last name from her full name.".

TO-GE:IELATE-PEROIIAL-:A4E is a user defined lisp function which has an argument list of (UNIT IG-
NORE), and is documented as: "Eztracts a person's first name from her full name.".

W:EDGE is a user defined lisp function which has an argument list of (UN SL), and is documented as:

"Recurses infinitely.".

4.4.7 Units with a prototype of Person Slot

Full-::ame is a slot which accepts values of type String Tvp(and makes sense for units of type Person

Type. This is the full. formal name of a person. Its value defaults by the function ARLO:QUESTION-3,
whiich:

Ask the user a question by:
(FORMAT QUERY-JO " P What is the full name of the person described by a," UNIT)

Hacking is a slot which accepts values of type String Type aud makes sense for units of type Person Type.
Thi is what a person is hacking on. Its value defaults by the function ARLO:TRY-AND-TRY-AGAIN-1,
which:

Tries to compute a value by two distinct methods:
Searches through the (ORE:INQI'JR:SIPERVISOR Alot. of a tinit for a vaU,.

% 58

ARLO Ken Haase

Ask the user a question by:

(FORMAT QUERY-JO "What is a hacking?" (GET- VALUE UNIT *>PERSoflAL-1.!E)

Last-llame is a slot which accepts values of type String Type and makes sense for units of type Person

Type. This is the last, name of a person. Its value defaults by the function ARLO:TO-GENERATE-LAST-
NAME, which:

Extracts a persor's last name from her full name.

Personal-lame is a slot which accepts values of type String Type and makes sense for units of type Person

Type. This is the informal name of a person. Its value defaults by the function ARLO:TO-GENERATE-

PERSONAL-NAME, which:

Extracts a person', first name from her full name.

Supervisor is a slot which accepts values of type Person Type and makes sense for units of type Person

Type. This is the supervisor of a person. Its value defaults by the function ARLO:QUESTION-4, which:

Ask the user a question by:

(FORMAT QUERY-JO - Who is a hacking for." (GET- VALUE UNIT #>PERSONAL-IA1M)

V':edging is a slot which accepts values of type String Type and makes sense for units of type Person

Type. This breaks. Its value defaults by the function ARLO:WEDGE, which:

Recurses infinitely.

orking-In-Field is a slot which accepts values of type String Type and makes sense for units of type

Person Type. This is the field a person is working in. Its value defaults by the function THE-VALUE-OF-
THE-HACKING-OF-THE-S UPERVISOR-OF, which:

Gets the CORE:INQUIR:HACKING of the CORE:INQUIR:S.UPERVISOR of some unit.

4.4.8 Units with a prototype of Person

These units are best organized by the Supervisor relation.

4.4.8.1 People without any supervisor

Susan ('alvin is working on Robots.

4.4.8.2 People working for Susan Calvin

Alice Adams is working on Robots for Susan Calvin.

Elizabeth ('haro is working on Cognitive Fundamentals for Susan ('alhin.

Pat Lee is working on Engineering Design for Susan Calvin.

Robert Rodgers is working on Emotional Analouge Robots for Susan ('alvin.

4.4.8.3 People working for Elizabeth Charo

Arthur Pendragon is working on Fantasy Games for Elizabeth ('haro.

4.4.8.4 People working for Pat. Lee

Kyle O'Shea is working on Engineering Design for l'Pat L.

ARLO Ken Haase

4.4.8.5 Units not classifiable by Supervisor

Winner is a protypical person description in the "INQUIR" knowledge base. Sonone who doesn't
always follow their supervisor.

4.4.9 Units with a prototype of Slot

Person-Slot is a slot which accepts values of type Any Type and makes sense for units of type Person
Type. This is the prototypical slot which attaches to people.

4.4.10 Units with a prototype of Shadow Slot

Shadoved-Hacking-Defanition is a slot which accepts values of type Slot Type and makes sense for units
of type Slot Type. This is a shadowed definition for hacking. Its value defaults by the function ARLO:FIND-

HACKING-SLOT, which:

Looks for a replacement hacking definition in a persons prototypes.

4.4.11 Units with a prototype of Type

Person-Type specifies a class of LISP objects which are classified by Unit-Type and which additionally
satisfy the predicate TEST--i (documented as "An arbitarily hairy test. "). This is a type satisifed by any unit
inheriting from Person.

Vinner-Tyr specifies a class of LISP objects which are classified by Unit-Type and which addition-
ally satisfy the predicate PROTOTYPE- OF-iII 11ER? (documented as "Checks to see if a unit inherits from
CORE:INQUIR: WINNER via CORE:PROTOTYPE."). This is a type satisifed by units inheriting (via
the Prototype relation) from the unit Winner.

4.4.12 Units with a prototype of Winner

Brian Walking-Song is working on Intelligent Mystic Systems for Elizabeth Charo.

60

ARLO Ken Haase

[Chaper5 -

ConclusionI

The preceding chapters may have seemed like anl attempt to 'sell' ARLO as a panacea for all one's rep-
resentation problems. Unfortunately, wheni pushed to the limit, ARLO broke down for fairly fundamental

reasons. This conclusion examines those reasons and presents arguments for which of ARLO's ideas are
worth keeping in new implementations, and which caused basic problems.

The version of A RLO described here was developed largely in the suminer of 1983 and thle spring of 1984.
In the fall of 1984, a discovery program implemented inl ARLO (Cyrano-O) acheived about half of the results
of AM and Eurisko in elementary mathematics, discovering the notion of number and synthesizing operations
such as multiplication over numbers. Due to anl insufficent, theory for the representation of inverses, thme step
to factorization and AM's subsequent discoveries inl elementary number theory were not acheived. However,
this work did reveal some fundamental properties of discovery programs, which are described inl iaaS6b'.

At the same time that the initial development of Cyranio-O was proceedinig, Dave McDonald and his

students at 11MASS-Arnherst were using ARLO as the representational backbone for generating English text

(using McDonald's MUMBLE IMcD831) for ain 'intelligent vincyclopedia. This work is described in IMP841.

Implementing ('yrano-O in ARLO revealed a v'ariet) of ctunbersoine prop~erties of ARLO inl the lat~e
winter and early spring of 1985, anl effort to reiniplemeni ARLO wiIs undertakeni. The key points of this

implementation (in particular its differenmces with respect to the ARLO described here) are presented below.

A manual for this version of ARLO is available as '1lti-.:. Work with this ntew ARLO, however, revealed
deep problemis (for purposes of automated dliscovery programzs) inl the 'framie-slot' orientation of AR LO,
These problems, broached in detail inl !Haaiw., . are also sketched below.

Despite these crim icimis, inaity of thme idval behind .AR1LO are still nieccegsary constituents of Al agae.

The ability to refer t.o abstract (lescript ions of properties allowsz progianis to easily use mnet a-kniowledge inl
describing their ownm construct ions. Inl particular, knowledge about the semntic restrict ions onl properties
allows a program imderstandi~ its -wnl Inlpescilt at ioll inl' genleral way.

61

%i

ARLO Ken Haase

5.1 Flaws in ARLO

In developing Cyrano-0, ARLO was found cumbersome for a variety of reasons. Some of the reasonis are
endemic to RLL's in general and will be described in Section 5.2, others are particular to the implementation
described in the preceding chapters, These problems are the topic of this section.

Most of the problems in using ARLO were not real problems of expressiveness; since a user could encode
arbitrary patterns of activity into LISP procedures. ARLO was arbitrarily expressive in a weak way. The
problems were rather problelns of perspicuity; in order to say certain things that one wished to say, it was
neccessary to descend into LISP. The magic grab-bag of LISP extensions became a cloak over the operation
of tlme system, req iring that, each modification and analysis module have special properties for special casing
various opaque extensions of ARLO.

This problem revealed itself in two particular components of ARLO: the dependency network and the
accretion of slot behaviours. In each of these, the usefulness and extensibility of the module was hampered by
the lack of sufficiently explicit representations of ARLO's implementation; the module had to be extensively
special-cased to handle opaquely distinct representational constructs.

5.1.1 Flaws in the Dependency Network

The dependency network, implemented in LISP Machine flavors, suffered from a variety of flaws. Most had
to do with the opaqueness of t lie dependency implementation; user interface utilities, debuggers, and special
network updating code had to deal with the vagaries of message passing in LISP as well as ARLO's unit-slot
representation. There was also the familiar crossbar problem of introducing new sorts of dependencies; in
order to introduce a new type of dependency, it was neccessary to determine the interaction of the new
dependency type with all existing dependency types and tools. The standard protocol for invalidation helps
this process, but managing details is still difficult. In particular, a user interface must special case its
presentations for each different sort of dependency.

The general result of these opacities in the dependency network is the same as opacity anywhere; a
significant increase in the amount of LISP code and programming required rather than a modest increase in
tie amount of specified representation. We would like to be able to extend and use the dependency network
iii much the same way as we use ARLO units. Unfortunately, dependency records are not units but are
special purpose LISP data structures encumbered with methods and procedural semantics couched in LISP
Machine LISP.

TIme obvious solution to this, implemented in [H.,.(8G.Lj, is to make dependency records into units. In
lHaa86a the values of slot may actually be 'value descriptions' which go through another level of interpre-
tation to get 'actual values', but which provide useful information about, the status of the value (where it
came from, how reasonable it. is, etc). These values are similar to the 'active values' of Loops JBS83] CYC
LSP851; the are annotated values about which arbitrary properties may be stated or inferred.

5.1.2 Flaws in Combining Slot Actions

The flaws described in this sectioni arise from ARLO's answer to the question: "How do we add new be-
haviours to a slot or type of lot" in ARLO, the way to add behaviours is to write LISP code which will
exeume the behaviom-. TIe way th. miodify bh.haviomr- (ummich simpler) is Io simply use one function instead

62

$
ARLO Ken Haase

of another as one slot of the abstract slot description being modified. This is made possible by the use of

reflexive operators. For adding behaviours, the presence of reflexive operators makes writing general code

simpler; we may simply say "do the inversion side-effects of the slot" rather than having to specify whatever

particular function implements "do tile inversion side-effects of the MOTHER slot." However the problem is

that new behaviours - specified in LISP - tile become largely opaque to the other behaviours and functions
of the system.

The one point where this problem became most obvious in ARLO was in attempting to maintain a

distinction between 'syntactic' and 'semantic' information about slots. For instance, to implement many-
to-many relations with slots, the values of slots must be interpreted as multiple values; the content of a

slot is then (say) a list. But the semantic restrictions placed on a slot (properties like Makes-Sense-For and

Data-Type) should apply to the individual elements of tile list, rather than the list itself. This distinction

(neccessary due to the focus of ARLO on single-valued slots 17) is impossible to patch by using prototype

inheritance for abstraction, for we wish to speak of semantic AND syntactic inheritance. Thus we can

say that the Children slot is syntactically a set and semantically only accepts human beings on both ends

(as attachement and value). We wish these properties to inherit differently. In ARLO, however, this was

impossible.

The solution to this particular problem in IH-a%86ai is to simply have two different inheritance relatious

and two distinct levels of operation for fetching slots: an implementation level of accessing a slot and an

interpretation level of getting slots. The first level is a 'syntactic' level; the second level is 'seinantic.'

This solution is effective but, introduces some problems of its own. In particular, though we would
like 'syntax' and 'semantics' to be orthogonal, they turn out not to be. When a new syntactic or semantic

primitive is introduced into the language, provision must often be made in the 'other half' of the implemen-

tation. This is better than in the implementation described in this document (where adding a non-primitive

construction involves combining LISP code from several places) but still not ideal. An argument that this
problem is endemic to RLLs is offered in Section 5.2.

5.2 Why RLL's are no good '

All of the problems described in the previous section arise from tile opacity of extensions to the RLL. These

opacities result from tlie inclusion of arbitrary LISP code in the specification of slot behaviours. I: each case,
in jH:t; :i the problem was resolved by factoring out the LISP code into primitives in the representation.

Thtus the met hods for handliiig dependency propogat ion were assigned to properties of value descript ions and
the discinction between syntactic specification and semantic specification moved from implicit specification

in LISP code to a distinction betweon hierarchies in the representation. We might hope that -- given enough
such migrations -- that tile right 'primitives' would be found to avoid any need to escape to LISP.

I nfortunately, we already know - in some sense - what this 'right' set of primitives should be: it's

called a piogramming language. ! sers of RLLs are forced into LISP (and therefore weaken the utility of the

RLL) when they need to do something which the RLL (as given) cannot adequately express. .4 sufficenly

pniuerful RLL vs a full.fledged proyrnimmzng languagfc. It. must be however a programming language

17 ARLO niight he criticized f,.r this t,:,oic assumpption, hut the probleni is th:at arty b sic ;tssutilipli n ti I he ll-

,I:g ' n v nv ,N "h.r r iite ' i v ,y de c idihg i ., the iwurky L.p:I eu e -. t IS' ((..

63

%' %
%d

1%

ARLO Ken Haase

which has a manipulable and perspicuous representation of itself. 'Limited RLLs,' like ARLO and the
language described in {Haa86ai, are useful for particular applications but eventually lose generality when
users require the full power of a programming language. For instance, slots defining individual slot actions
are fine until one wishes to compose new actions to existing ones. At this point, since the notion of a slot is
a weakened and limited version of the notion of a function, to define the composition of slot executions, the
user mtuA escape to LISP where she canl use the full notion of functional composition and sequencing.

The solution to this problem, as I suggest in 1HLaa8GC, is to develop a programming language with the
self-descriptive capacity of RLLs. In brief, this language is a higher order language similar to FP [Bac78t with
inferred typing of functions (much as in ML Mi178 and the addition of a special class of functions - called
mutable mappings - which replace the functionality of slots and properties. The function mKE-.TABLE
constructs a mutable function which is simply a pairwise mapping of objects. The function 14UTATOR returns a
procedure for storing mappings for the mutable function. For example, the following uses mutable operations
to define the COLOR function and set the color of a few objects.

(define color (make-mutable))

COLOR

(color 'apple)

< 1rNKNO WN> ; Indicates a value with no mapping.
(define define-color! (mutator color))

DEFIINE-COLOR

(define-color! 'apple 'red)

r UNKNOWN> ; the previous return value.
(define-color! 'orange 'orange)

< I NKNO WN>
(color 'apple)

RED

(color 'orange)

ORA'GE

These mutatable functions can be combined with higher order operators, like COIPOSE or RESTRICT-RANGE
Here -Ae defined a special subset of colors and compose this with a class of fruits:

(define real-colors (set-of '(red green blue yellow orange pink)))

REAL-COLORS ; The value of this is a type.
(define real-color (restrict-range color real-colors))

REAL- COLOR

(define fruit (make-mutable))

FRUIT

(define fruit-color (compose fruit real-color))

FRUIT-COLOR

SO, define~d, 'At C111 el au(] :ICCes the color of fru]its by sing thu. rocedlure. we have dlefied and lel ".tri

64

%V

ARLO Ken Haase

associated mutators.

((mutator fruit) 'apple-tree 'apple)

< UNKNO WN>
(fruit-color 'apple-tree)

RED

Knowledge about procedures can be accessed by other procedures, in particular, DOlMAI and PAIIGE.

(domain color)

[ANYTHING]

(range color)
[ANYTHING]

(range real-color)

*[One of RED GREEN BLUE YELLOW ORANGE PINK)

(range fruit-color)

* [One of RED GREEN BLUE YELLOW ORANGE PIIK)

By defining all of ones representational constructs in this way, the expressive power of our representation

language is nearly equal to that of LISP-like languages while still giving us the power of an RLL.

5.3 Why RLL's Arcn.'t So Bad

In the previous section, an argument was introduced for a new sort of representation language language,

criticizing fundamental flaws in most representation language languages to date. An important point to

make however, is that the criticism applies primarily to programs which must learn by accquiring new

representations and definitions. For implementing any given Al program - capturing a given domain's

expertise - an RLL provides a powerful toolkit for building a specially tailored representation. Only when

new tools must be built do traditional RLLs falter or fail.

In conclusion, the reasons for wanting to have an RLL are sustained; self-debugging, self-explanation,

and self-modification are greatly enhanced by having a representation of the representation being used.

Unfortunately, these reasons are countervailed as the expressive demands on the language require escape to

a 'real' programming language. The solution - it then seems - ust be to make an RLL which is a 'real'

programming language.

65

O INN IIL^L1 I

ARLO Ken Haase

Chapter A-I

An ARLO 'Explanation' 1

These units are best organised by the My File Of Definition relation.

A-1.1 Units defined in Arlo: SOURCES; BOOT

These units are best organized by the Makes Sense For relation.

A-1.1.1 Units with a Makes Sense For slot of Any-Type

The unit Defaulting Slot is defined in the knowledge base Core. This is the prototype for slots which
default their values.

The unit Generic Slot is defined in the knowledge base Core. This is a prototypical "generic" slot
which looks for local slot definitions on each unit.

The unit Primitive Slot is defined in the knowledge base core. This is the simplest prototype slot.
The unit Prototype is defined in the knowledge base Core. This is a unit's prototype.

A-1.1.2 Units with a Makes Sense For slot of Slot-Type

These units all have PROTOTYPE slots of slot.

These units are best organized by the Data Type relatioji.

Units with a Data Type slot of Function-Type

These units are best organized by the To Default Value relation.

Units with a To Default Value slot of #'DECACHE-FINDER
To-Decache-Value is a slot which accepts values of type Function Type and makes sense for units of type

Slot Type. This is a slot's function for invalidating it's value on a unit. Its value defauls by the function

A RLO:DE('ACH E-FIN DER, which:

This finds the deaching function for a unit by looking through its prototypes.

Units with a To Default Value slot of #'DONT-DEFAULT-SLOT

66

!%
"m ""

ARLO Ken Haase
'

To-Default-Value is a slot which accepts values of type Function Type and makes sense for units of type
Slot Type. This is the function for computing the value of a slot at need. Its value defaults by the function

ARLO:DONT-DEFAULT-SLOT, which:

Signals an error if called to default a value.

Units with a To Default Value slot of #'FIND-VALUE

Actual-Put-Value is a slot which accepts values of type Function Type and makes sense for units of type
Slot Type. This is a slot's function for "physically" depositing its value. Its value defaults by the function
ARLO:FIND-VALtTE, which:

Look through the prototoypes of a unit for a particular slot.I

To-Cache-Value is a slot which accepts values of type Function Type and makes sense for units of type Slot
Type. This is a slot's function for caching its value. Its value defaults by the function ARLO:FIND-VALUE,

which:

Look through the prototoypes of a unit for a particular slot.

To-Get-Value is a slot which accepts values of type Function Type and makes sense for units of type Slot

Type. This is a slot's procedure for fetching its value. Its value defaults by the function ARLO:FIND-VALUE,
which:

Look through the prototoypes of a unit for a particular slot.

To-Process-Slot is a slot which accepts values of type Function Type and makes sense for units of type
Slot Type. This is a slot's function for transforming its description into "print-queue" form. Its value defaults
by the function ARLO:FIND-VALUE, which:

Look through the prototoypes of a unit for a particular slot.

To-Put-Value is a slot which accepts values of type Function Type and makes sense for units of type Slot

Type. This is a slot's procedure for storing a value. Its value defaults by the function ARLO:FIND-VALUE,
which:".

Look through the prototoypes of a unit for a particular slot.

To-Retract-Value is a slot which accepts values of type Function Type and makes sense for units of type
Slot Typc. This is a slots procedure for removing its value. Its valtie defaults by the function ARLO:FIND-
VALUE, which:

Look through the prototoypes of a unit for a particular slot.

Units with a To Default Value slot of #'TO-GENERATE-SLOT-DESCRIBER

To-Describe-Value is a slot which accepts values of type Funthn T e nd makes sense for units of type
Slot Type. This is a slot's function for describing its value. Its value defaultb. by the function ARLO:TO-
GENERATE-SLOT-DESCRIBER, which:

Gentrat.. a function for dcscrz,'ng a slot' value.

Units with a To Default Value slot of #'TO-GENER ATE-SLOT-PRINTER

67

'5!'

ARLO Ken Haase

To-Print-Value is a slot which accepts values of type Function Type and makes sense for units of type

Slot Type. This is the function for printing the value of this kind of slot. Its value defaults by the function

ARLO:TO-G l NERATE-SLOT-PR INTER, which:

Geis the function for printing a slots value.

Units with a To Default Value slot of #'TO-GENERATE-SLOT-READER

To-Read-Value is a slot which accepts values of type Function Type and makes sense for units of type

Slot Type. This is a slot's function for reading in its value. Its value defaults by the function ARLO:TO-

GENERATE-SLOT-READER, which:

Gets the function for reading in a slot's value.

Units with a To Default Value slot of #'TO-GENERATE-TO-VERIFY-TYPE

To-Verify-Type is a slot which accepts values of type Function Type and makes sense for units of type

Slot Type. This is the function which verifies the suitability of a slot's attachment. Its value defaults by the

function ARLO: TO-G ENERATE-TO-VERIFY-TYPE, which:

Compute a slot's type checker with the Type-Checker coder.

Units not classifiable by To-Default-Value

Actual-Get-Value is a slot which accepts values of type Function Type and makes sense for units of type

Slot Type. This is a slot's function for "physically" extracting its value.

Units with a Data Type slot of Slot-Type

Shado-Slot is a slot which accepts values of type Slot Type and makes sense for units of type Slot Type.

This is the prototype for all slots which shadow other slots.

Units with a Data Type slot of Type-Type

Data-Type is a slot which accepts values of type Type Type and makes sense for units of type Slot Type. This

* is a slot's description of its acceptable values- its range. Its value defaults by the function ARLO:DATA-

TYPE-GENERATOR, which:

Looks through the prototypes of a slot for its data-type

Makes-Sense-For is a slot which accepts values of type Type Type and makes sense for units of type Slot

Type. This describes the sorts of units a slot may attach to- its domain. Its value defaults by the function

ARLO:MAKES-SENSE-FOR-G ENERATOR, which:

Looks through the prototypes of a slot for its attachment type.

A-1.1.3 Units with a Makes Sense For slot of Unit-Type

These units are best organized by the Prototype relation.

Units with a prototype of Generic Slot

The unit Typed Slot is defined in the knowledge base Core. This is the prototype for slots which perform

type checkinig.

Units; withI a prototype of Defaulting Slot

ARLO Ken Haase

slot is a slot which accepts values of type Anti Type and makes sense for units of type U1nit Type. This is

the prototype for slots which both default and type check their values.

Units with a prototype of Slot

These units are best organized by thle Data Type relation.

Units with a Data Type slot of Any-Type

M'y-File-Cf-Definition is a slot which accepts values of type Any Type anid makes sense for units of type

I 'nit Type. This is the file in which a unit was defined. Its value defauilts by thje futict ion ARLO:GET-TIME,
which:

Gets the current universal time.

V Wy-Nane is a slot which accepts values of type Any Type and miakes sense for units, of type ('nit Type.

This is a unit's name. Its value defaults by the function ARLO:GENERATE-!NIT-NAME, which:

Generates a unit name. (Never really called)
Shadow-Slot -Slot is a slot which accept~s values of type Any Typanmkesnefouisofte nt

Type. This stores the slot referring to ways to find a slot.

Units with a Data Type slot of Function-Type

1y-To-Describe-self is a slot which accepts valuies of type FUnCtIOTI Typt, and makes sense for units of

* type U'nit Type. This is a unit's function for describing itself. Its value defaults by thle function ARLO:I*NIT-

* DESCRIBER-GENERATOR, which:

Looks through the prootypes of a unit for a description function.

M.y-To -Print -Self is a slot which accepts values of type Function Tjype and makes sense for units of type
U'nit Type. This is a unit's function for printing itself. Its value defaults by the function ARLO:I-.NIT-
PRINTER-GENERATOR, which:

Looks through the prootypes of a unit for a printer function.

Units with a Data Type slot of List-Type

High-Level-Definition is a slot which accepts values of type List Type and makes sense for unitis of type

I'iType. This is a definition for sonme function in a high level lasiguage. Its valu defaults, by t ht functionl

ARLO:ASK-IU)SER-FOR-SLOT, which:

As/cs user for a slot on a window that's big enough.

Units with a Data Type slot of string-Type

Description is a slot which accepts values of type String Type and] makesz senise for units of type ["nit

Type. This is a string cle'criiiig what this unit IS. Its value default I)) lie fmtict imn AR l.O:lEFA1*LT-
DESCRIPTION-(;ENERATOR. which:

This generates a de.~ rtption excuse.

I.y-Creator is aI slot wi i accepts valutes of type String Typet andi mttake> cttsv fo imii tf ft ypt ('rt Typej).

This is thle USVi Who0 crVamell (iti ally. compiled) a unit. lts valut' dehuhilt 1f1 iii' futiot mu All L)ET-

HAC'KER, which:

R~eturns the full nam((, /to current usecr, a (zatm

69

% -

jaNaJii

ARLO Ken Haase

Units with a Data Type slot of Tine-Type
M4y-Time-O -Creation is a slot which accepts values of type Time Type and makes sense for units of type

(Vnit Type. This is the time when a unit was created (as "universal" time). Its value defaults by the function

ARLO:GET-TIME. which:

Gets the current universal time.

A-1.2 Units defined in Arlo: SOURCES; CODERS

These units are best organized by the Data Type relation.

A-1.2.1 Units with a Data Type slot of Any-Type

These units all have PROTOTYPE slots of Function-lDescriptor.

These units all have MAKES-SENSE-FOR slots of Impleented-Function-Type.

Errors-Expected is a slot which accepts values of type Any Type and makes sense for units of type

Implemented Function Type. A descriptor for the EXPECTING coder.

From-unit is a slot which accepts values of type Any Type and makes sense for units of type Implemented

Function Type. A descriptor for the INHERITS? coder.

Message-Spec is a slot which accepts values of type Any Type and makes sense for unit.s of type Imple-

mented Function Type. A descriptor for the ASK-HACKER coder.

Method-Descriptions is a slot which accepts values of type Any Type and makes sense for units of type

Implemented Function Type. The ARLO units describing each coder. Its value defaults by the function

ARLO:GENERATE-METHOD-DESCRIPTIONS, which:

Generates descriptions for each method in a try-and-try-again function.

Possible-tethods is a slot which accepts values of type Any Type and makes sense for units of type

Implemented Function Type. A descriptor for the EXPECTING coder.

Slot-To-Inherit-Through is a slot which accepts vabies of type Any Type and makes sense for units of
, type Implem.nted Function Type. A descriptor for the INHERIT-THROUGH coder.

Slot-To-Search-Through is a slot which accepts values of type Any Type and makes sense for units of

type Implemented Function Type. A descriptor for the INHERITS? coder.

Slots-To-Combine is a slot which accepts values of type Any Type and makes sense for units of type
Implemented Function Type. A descriptor for the SLOT-COMPOSITION coder.

Test-Criterion is a slot which accepts values of type Any Type and makes sense for units of type
Implemented Function Type. A descriptor for the TEST coder.

A-1.2.2 Units not classifiable by Data-Type

These units are best organized by the Prototype relation.

Units with a prototype of Coder

ASK-HACKER is an ARLO coder. This generate., a question asking function.. The functions it. generate5

are specified by one parameter: essage-Spec . It's body is generated by the functiii GENERATE-ASK-
HACKER.

70

r J.

II

ARLO Ken Haa.se

EXPECTING is an ARLO coder. This defines a try and try again function which expects certain
errors.. The functions it generates are specified by two parameters Errors-Expected and Poss.ble--lethods.

It's body is generated by the function GENERATE-EXPE('TING.

INHERIT-TItROI'GH is an ARLO coder. This defines functions which search for values along some

relation.. The functions it generates are specified by one parameter: Slot-To-Inherit-Through . It's body is

generated by thme fumction, GENERATE-INHERIT-TIIROI GH.

INHERITS? is an ARLO coder. This implemltents a function for confirming inheritance along some

relation.. The functions it generates are specified by two parameters: From-Unit and Slot-To-Search-Through.
It's body is generated by the function GENERATE-INHERITS?.

METHODS is an ARLO coder. This builds a try and try again function.. Tile functions it generates

are specified by one parameter: Possible-l,lethods . It's body is generated by tile function GENERATE-
METHODS.

SLOT-COMPOSITION is an ARLO coder. This generates a slot composition function. The functions

it generates are specified by one parameter: Slots -To-Combine . It's body is generated by the function

GENERATE-SLOT-COMPOSITION.

TEST is an ARLO coder. This defines a conmplicated conjunction of many predicates.. The fun(-

tions it. generates are specified by one parameter: Test-Criterion . It's body is generated by the functioM
GENERATE-TEST.

Units with a prototype of Hand Coded Function

GEIIERATE-METHDD-DESCRIPTIOilS is a user defined lisp function which has an argument list of (UNIT IGNORE),
and is documented a.. "Generates descriptions for each method in a try-and-trt-rqazn functin."

A-I.3 Units defined in Arlo: SOURCES; CODING

These units are best organized by the Makes Sense For relation.

A-1.3.1 Units with a Makes Sense For slot of Coded-Function-Type

Coded-By is a slot which accepts values of type Coder Type and makes sense for units of type Coded

Function Type. This is the unit describing the implementation of this function. Its value defaults by the
funct ion AR LO:DONT-DEFAI ULT-SLOT. which:

.5ignals an crror if called to default a value.

Internal-.ame is a slot which accepts values of type Symbol Type and makes sense for units of type
('aded Funchon T.'ype. This is the unit describing the implementation of this function. Its value defaults by

the function ARILO:CENERATE-INTERN ,I -FU7N('TION-NAME, which:

Thzs consts an ugly internal functton name for a description.

A-1.3.2 Units with a Makes Sense For slot of Coder-Type

Coder-Slot is a slot which accepts values of type .4,z/ Tlg1(and makes s-ensc foi unitS of type ('odtr
Tu"p, This is t .Ili ,lw oypt f, Al ,ii, 4 ,,f(,,I ,h-lo i , . Ir. vI ' ,h'I;m hIt l] tla' fhlIti-t AIt.t.:A.<t'h-

IJ.

%7

Lk-. 4

ARLO Ken Haase

USER-FOR-SLOT, which:

Asks user for a slot on a window that's big enough.

Description-Parameters is a slot which accepts values of type List Type and makes sense for units of
type Coder Type. These are the specifications from which the function is generated.

Documentor is a slot which accepts values of type Function Type and makes sense for units of type Coder
Type. This is the function which documents this sort of function.

Implementor is a slot which accepts values of type Function Type and makes sense for units of type Coder

Type. This is tile function which codes up this sort of function.
:.ame-Generator is a slot which accepts values of type Function Type amd makes sense for units of type

Coder Type. This is the function which names this sort of function. Its value defaults by the function
ARLO:TO-DEFAULT-NAME-GENERATOR, which:

This generates a function which generates function name generators.

A-1.3.3 Units with a Makes Sense For slot of @T[Function-Typel

Function-Debugging-Info is a slot which accepts values of type List Type and makes sense for units of
type Function Type. This is random debugging information for a function. (Generated by the compiler) Its
value defaults.by the function ARLO:TO-DEFAULT-FUNCTION-DEBUGGING-INFO, which:

This finds the internal debugging information for a function.

Function-l-lax-Args is a slot which accepts values of type Integer Type and makes sense for units of type
Function Type. This is the maximum number of arguments a function may take. Its value defaults by tile
function ARLO:TO-DEFAULT-MAX-ARGS, which:

This returns the maximnum number of args a function may take.

Function-1,'in-Args is a slot which accepts values of type Integer Type and makes sense for units of type

Function Type. This is the minimum number of args a function requires. Its value defaults by the function

This returns the minimum number of args a function takes.

4 Type. This is tile macros used in defining a function. Its value defaults by the function ARLO:TO-DEFAULT-
MACROS-USED, which:

This de ttrmnes what macros were expanded for a given function.

!.Iagic-Argument-Descriptor is a slot which accepts values of type Intger TYpe and makes sense for units
of type Function Type. This is a magic number describing a functions arguments (generated by the compiler)
Its value defaults by the function ARLO:TO-DEFAULT-MAGIC-ARGUMENT-DESCRIPTOR, which:

' .'. This returns a magical argument descriptor for a function.

*A-1.3.4 Units with a Makes Sense For slot of Implemented-Function-Type

These units ;lie hiest organized by (he Prototype relation.

72

~~%

ARLO Ken Haase

Units with a prototype of Slot

Function-Descriptor is a slot which accepts values of type Any Type and makes sense for units of type

Implemented Function Type. This the prototype for attributes describing functions.

Units with a prototype of Function Descriptor

These units are best organized by the Data Type relation.

Units with a Data Type slot of Lisp-Function-Type

Functional-Value is a slot which accepts values of type Lisp Function Type and makes sense for units of

type Implemented Function Type. This is a version of the function acceptable to APPLY. Its value defaults

by the function ARLO:TO-DEFAULT-FUNCTIONAL-VA LUE, which:

Gets the functional value - compiled or interpreted - of a function.

Units with a Data Type slot of List-Type

Arglist is a slot which accepts values of type List Type and makes sense for units of type Implemented

Function Type. This is the argument list for a function. Its value defaults by the function ARLO:TO-

DEFAULT-ARGLIST, which:

Defaults the arglist of a function.

Lambda-Body is a slot which accepts values of type List Type and makes sense for units of type Implemented

Function. Type. This is the body of the function. Its value defaults by the function ARLO:TO-DEFAULT-

LAMBDA-BODY, which:

Finds or generates a lambda body for a function.

Lambda-Def.inition is a slot which accepts values of type List Type and makes sense for units of type

Implemented Function Type. This is the lambda definition of a function. Its value defaults by the function

ARLO:TO-DEFAULT-LAMBDA-DEFINITION, which:

This tries to compute a lambda definition for a slot.

Units with a Data Type slot of String-Type

Documentation is a slot which accepts values of type String Type and makes sense for units of type

Implemented Function Type. This is the documentation for a function. Its value defaults by the function

ARLO:TO-DEFAULT-DOCUMENTATION, which:

Finds the documentation for a function.

Units with a Data Type slot of Subr-Type

Compiled-Definition is a slot which accepts values of type Subr Type and makes sense for units of type

Implemented Function Type. This is the compiled definition of a function. Its value defaults by the function

AR LO:TO-DEFAIVLT-('OMP]LED-DEFINITION, which:

Compiles the definition of a function.

Units with a Data Type slot of Valid-Function-Dame-Type

Function-Plame is a slot which accepts values of type Vazd Funcoton Name Type and makes sense for

units of type Implemented Function Type. This is the function spec for the function descrilbed by a unit. Its

value defaults by the function ARLO:TO-DEFAUTLT-FIN('TION-NAME. which:

('omput.s a function name by lookzng on a coder "lot.

73

ARLO Ken Haase

A-1.3.5 Units not classifiable by Makes-Sense-For

The unit Coder is defined in the knowledge base Core. This is the prototype for all ARLO's automatic

coders.
The unit Hand Coded Function is defined in the knowledge base Core. This is the prototype for

functions defined by DEFINE.

The unit Implemented Function is defined in the knowledge base Core. This is the prototype for
implemented LISP function descriptions.

A-1.4 Units defined in Arlo: SOURCES; LISP

These units all have PROTOTYPE slots of Hand-Coded- Funct 1on. FIIID-VALUE is a user defined lisp

function which has an argument list of (UNIT SLOT), and is documented as: "Look through the prototoypes
of a unit for a particular slot.".

GEIlERATE-IIITER'AL-FUNCTIOII-I.IA4E is a user defined lisp function which has an argument list of (UNIT

IGNORE), and is documented as: "This conses an ugly internal function name for a description.".

MAKES-SEISE-FOR-GENERATOR is a user defined lisp function which has an argument list of (UNIT SLOT),

and is documented as: "Looks through the prototypes of a slot for its attachment type.".
TO-DEFAULT-COIIPILED-DEFIIIITIOII is a .user defined lisp function which has an argument list of (UNIT

IGNORE), and is documented as: "Compiles the definition of a function.".
TO-DEFAULT-DOCUIETATI O is a user defined lisp function which has an argument list of (UNIT IGNORE),

and is documented as: "Finds the documentation for a function.".

TO-DEFAULT-FUJCTIO-II-AME is a user defined lisp function which has an argument list of (UNIT IGNORE),

and is documented as: "Computes a function name by looking on a coder slot.".

TO-DEFAULT-FJl C7IDl1AL-VALUE is a user defined lisp function which has an argument list of (UNIT IG-

NORE), and is documented as: "Gets the functional value - compiled or interpreted - of a function."
TO-DEFAULT-LAMBDA-BODY is a user defined lisp function which has an argument list of (UNIT IGNORE),

and is documented as: "Finds or generates a lambda body for a function."

TO-DEFAULT- LAIBDA-DEFI 1ITIDU1 is a user defined lisp function which has an argument list of (UNIT
IGNORE), and is documented as: "This tries to compute a lambda definition for a slot. ".

TO-GEIIERATE-TO-VERIFY-TYPE is a user defined lisp function which has an argument, list of (SLOT IG-
NORE), and is documented as: "Compute a slot's type checker with the Type-Checker coder.".

U:IIT-PRIITER-GEINEATOR is a user defined lisp function which has an argument list of (UNIT SLOT), and
is documented as: "Looks through the prootypes of a unit for a printer function.".

A-1.5 Units defined in Arlo: SOURCES; TYPES

These units are best organized by the Prototype relation.

A-1.5.1 Units without any prototype.

The unit Type is defined in the knowledge base Core. This is the prototype for all types. It accepts

a lytlhing.

74

%U

ARLO Ken Haase

A-1.5.2 Units with a prototype of Coder

TYPE-CHECKER is an ARLO coder. Generates a type checking function for a slot.. Tile func-
tions it generates are specified by one parameter: Relevant-Slot .It's body is generated by the function
GENERATE-TYPE-CHECKER.

A-1.5.3 Units with a prototype of Function Descriptor

Relevant-Slot is a slot, which accepts values of type Any Type and makes sense for units of type Imple-

mented Function Type. A descriptor for the TYPE-CHECKER coder.

A-1.5.4 Units with a prototype of Hand Coded Function

TO-GEUERATE-SLOT-DESCRIBER is a user defined lisp function which has an argument list of (UNIT IG-
NORE), and is documented as: "Generates a function for describing a slot's value.".

TO-GEIIERATE-SLOT-PRI!,TER is a user defined lisp function which has an argument list of (UNIT IGNORE),
and is documented as: "Gets the function for printing a slot's 'alue.".

TO-GEIRATE-SLOT-READER is a user defined lisp function which has an argument list of (UNIT IGNORE),

and is documented as: "Gets the function for reading in a slot's value. ".
TD-GEI;ERATE-TYPE-CHECKER is a user defined lisp function which has an argument list of (UNIT IGNORE),

and is documented as: "Generates the type checking function for a type.".

A-1.5.5 Units with a prototype of Slot

These units are best organized by the Data Type relation.

Units with a Data Type slot of Function-Type

Function-To-Describe is a slot which accepts values of type Function Type and makes sense for units of type

Type Type. This is the function for describing a value of a particular type. Its value defaults by the function
INttERIT-THROUGH-GENERALIZATION, which:

Searches through the CORE:GENERALIZATION slots of a unit for a value.

Functaon-To-Print is a slot which accepts values of type Function Type and makes sense for units of type
Type Type. This is the function for printing a value of a particular type. Its value defaults by the function
INHtERIT-THROI'GH-GENERALIZATION, which:

Searches through the ('ORE:GENERALIZATION slots of a unit for a value.

Function-To-Read is a slot which accepts values of type Function Type and makes sense for units of type
Typ(Type, This is the function for reading a value of a particular type. Its value defaults by the function

INHER IT-THROI:GH-(/ ENERALIZATION, which:

Searches through the CORE:GENERALIZATION slots of a unit for a value.

Specification isa slot which accepts values of type Function Type and makes sense for units of type Type
Type. This is the function which specializes this type. Its value defaults by the function ARLO:QIT ESTION-
2. which:

A.4 the. user a q7t sti(,?, by:

4 75

IN N

ARLO Ken Haase

(FORMAT QUERY-JO
&tWhat predicate specifies a from a i"

UNIT
(GET- VALUE (NIT #>GE11ERALIZATI011))

Type-Checking-Function is a slot which accepts values of type Funct on Type and makes sense for units of

type Type Type. This is the predicate for a type. Its value defaults by the function ARLO:TO-GENERATE-
TYPE-CHECKER, which:

Generates the type checking function for a type.

Units with a Data Type slot of Type-Type

Generalization is a slot which accepts values of type Type Type and makes sense for units of type Type Type.
This is the type upon which a given type is built. Its value defaults by the function ARLO:QUESTION-i,
which:

Ask the user a question by:
(FORMAT QUERY-JO " &What is a a specialization of'" UNIT)

1,y-Specific-Type is a slot which accepts values of type Type Type and makes sense for units of type
Unit Type. This is how to tell if a unit inherits from this unit.

A-1.5.6 Units with a prototype of Type

These units are best organized by the Generalization relation.

Types without any generalizations.

Any-Type specifies the class of LISP objects which satisfy the predicate ANYTHINGP (documented as "A
unparticular type predicate."). This is the top of the type hierarchy.

Types which are specializations of Any Type

Function-Type specifies a class of lisp objects which are classified by Any-Type and which additionally satisfy
the predicate CALLABLEP (documented as, "Determines if an object is either a function or a function-
describhng unit"). This is a type satisifed by any callable object (including function descriptions).

Integer-Type specifies a class of lisp objects which are classified by Any-Type and which additionally
satisfy the predicate FIXP. This is a type requiring a LISP integer. (a fixiin or a bignuni)

List-Type specifi +s a class of lisp objects which are classified by Any-Type and which additionally satisfy
the predicate LIST-OR-NIL-P (documented as "A predicate which accepts conses and NIL."). This is a type
satisfied by any list (including NIL).

Pathname-Type specifies a class of lisp objects which are classified hy Any-Type and which additionally
satisfy the predicate PATHNAMEP. This is a type which is satisfied by any pathuianie

String-Type specifies a class of lisp objects which are classified by Any-Type and which additionally satisfy
lie predicate STRINGP. This is a type satisifed by ;my string.

Symbol-Type specifies a class of lis4p objects which ar classified by Any-Type and which additionally satisfy
the predicate SYMBOLP. This is a I)pc .-) isified bN .,1y1 LISP nyol.

7C6

ARLO Ken Hase

Unit-Type specifies a class of lisp objects which are classified by Any-Type and which additionally satisfy
the predicate UNITP (documented as "Function determining if something is a unit- used bi TYPEP"). This
is a type describing any ARLO unit.

Types which are specializations of Function Type

Implemented-Function-Type specifies a class of lisp objects which are classified by Function-Type and which
additionally satisfy the predicate IMPLEMENTED-FUNCTION?. This is a type satisifed by any lisp func-
tion.

Lisp-Function-Type specifies a class of lisp objects which are classified by Function-Type and which
additionally satisfy the predicate FUNCTIONP. This is a type satisifed by any lisp function.

Subr-Type specifies a class of lisp objects which are classified by Function-Type and which additionally
satisfy the predicate SUBRP. This is a type satisfied by any LISP callable object (i.e. APPLicable)

Valid-Function-!'ame-Type specifies a class of lisp objects which are classified by Function-Type and
which additionally satisfy die predicate VALIDATE-FUNCTION-SPEC. This is a type satisifed by any lisp
function spec.

Types which are specializations of Implemented Function Type

Coded-Function-Type specifies a class of lisp objects which are classified by Implemented-Function-Type and
which additionally satisfy the predicate PROTOTYPE-OF-CODED-FUNCTION? (documented as "Checks
to set if a unit inherits from CORE:CODED-F1TNC TION via CORE:PROTOTYPE."). This is a type
satisifed by any lisp function.

Types which are specializations of Integer Type

Time-Type specifies a class of lisp objects which are classified by Integer-Type and which additionally satisfy
the predicate FIXP. This is a type requiring an integer indicating seconids past the turn of the century.

Types which are specializations of Unit Type

Coder-Type specifies a class of lisp objects which are classified by Unit-Type and which additionally satisfy
the predicate CODER?. This is a type describing any ARLO slot.

Slot-Type specifies a class of lisp objects which are classified by Unit-Type and which additionally -atisfy
the predicate SLOT? (dcuimeited as 1)etermines if a unit %s a slot- (.e. has PRIMITIVE-SLOT as a
prototype)"). This is a type describing any ARLO slot.

Type-Type specifies a class of lisp objects which are classified by Unit-Type and which additionally satisfy
the predicate IS-IT-A-TYPE-P (documented as "Determine, if something is a unit inheriting from TYPE.").
This is a type which is satisified by anv type describing ARLO unit.

A-1.6 Units defined in Arlo: SOURCES; WHISTLES

(PROPERTY ARLO-U!JIT :;A:ED-STRUCTURE- I:VOKE) is a user defined lisp funct ion which has ant argunient list
of (OP UNIT &REST MISC-ARGS), and i- documented as: "Data ,,trected prdtty printznq ard dcscribing
for unit.s.

77

.2.

. Wl" ' W i

ARLO Ken Haase

ASK -USER-FOR- SLOT is a user defined lisp function which has an argument list of (IN-UNIT A-SLOT
&OPTIONAL (STREAM QUERY-1O) &REST FOR MAT-ARGS), and is documented as: "Asks user for a
slot on a window that's big enough.".

78

ARLO Ken Haaae

Chapter A-2I
An Explanation 'Explanation'i

These units are best organized by the My File Of Definition relation.

A-2.1 Units defined in Arlo: AI; DOCUMENT

These units are best organized by the Prototype relation.

A-2.1.1 Units with a prototype of Explanation Slot
Poesitional-Assunptions. is a slot which accepts values of type Any Typeadmkssnefruiso

type Explanation Type. These are The slots distinguished by this explanations superiors. Its value defaults
by the function A RLO:TO-DEFAULT-POSITION AL-ASSU-MPTIONS, which:

-Adds a units superiors primary division to its positional assumptions.

Scribe-Documentor is a slot which accepts values of type Function Type and makes sense for units of
type Explanation Type. This is the function SCRIBE documentation fo an explanation. Its value defaults

by the function AR LO: FIND-VALUE, which:

Look through the prototoypes of a unit for a particular slot.

Scribe -Expl anat ion- Title is a slot which accepts values of type Any Tye an akes, sense for units of

type Explanation Ty~pe. This is the section title SCRIBE should use for this explanation. Its value defaults

by the function AR LO:GENERATE-S(CRIBE-EXPLANATION-TlTLE, which:

Attempts to generate an appropriate scrzbe-st pie heading for a section.

A-2.1.2 Units with a prototype of Hand Coded Fuinction

DOMCUE1r- FILE is a user defined lisp funmcl ion which has anm argument list of (PATHNAME KB TITLE),

and is clocunient ed as: -Docurnunts all tf zin it mn a yiven KR comniny from a givf-n file."
DO1IT-DEFAULT- SLOT is a user definedl lisp funci i which has an argunient list of (UNIT SLOT), and is

documented as: "Siqnti.- ar, frror if ciltud ho de~faul v/fiiit.

79

S %f

ARLO Ken Haase

EXPLANATION-PRECEDENCE is a user defined lisp function which has an argument list of (EXPLANATIONI

EXPLANATION2). and is documented as: 'Establishes an order on a hierarchy of explanations.".

GEHERATE-SCRIBE-DOCU1MEIHTATIOil-FOR-COMPLFX-EXPLANATI ON is a user defined lisp function which has an
argument list of (EXPLANATION STREAM), and is documented as: "Produces scribe docurnuntation for

an explanation of a set of units.".

GEIIERATE-SCRIBE-DOCUEITATIOII-FOR-UIIIT-EXPLAIATI014 is a user defined lisp function which has an argu-

nient list of (EXPLANATION STREAM), and is documented as: "Documents a unit by looking for a scribe
documentor on its prototypes.".

GEIIEATE-SCRIBE-EXPLAIIATIOII-TITLE is a user defined lisp function which has an argument list of (EX-

PLANATION IGNORE), and is documented as: "Attempts to generate an appropriate scribe-style heading
for a section.".

IlIHERITIIIG? is a user defined lisp function which has an argument list of (SUPER UNIT BY-RELATION),
and is documented as: "Determines if some unit inherits another by some relation.".

PRIP T-UNIT -FOR-SCIBE is a user defined lisp function which has an argument list of (UNIT STREAM),

and is documented as: "Prints a unit for SCRIBE, being cute about knowledge bases.".

RUII-SCRIBE-DOCU:E.fITORis a user defined lisp fuuction which has an argument list of (ON-EXPLANATION

TO-BUFFER), and is documented as: "Runs the documentor on some explanation.".

SAY-SLOT-VALUE is a user defined lisp function which has an argument list of (UNIT SLOT STREAM),
and is documented as: "Produces a psuedo-english description of some slot value.".

SCRIBE-ALPHABETIZE-EXPLAtATIOHIS is a user defined lisp function which has an argument list of (EXPLA-

NATIONS), and is documented as: "Sorts a set of explanations alphabetically by SCRIBE-EXPLANATION-

TITLE".

SCRIBE-DOCUILEIIT-EXPLAIIATIO[I is a user defined lisp function which has an argument list of (EXPLANA-
TION TO-STREAM), and is documented as: "Generates scribe documentation for an explanation.".

SCRIBE-DOCUI E::T-PERSOII-XPLAIIATIII is a user defined lisp function which has an argument list of (EX-
PLANATION STREAM), and is documented as: "Produces SCRIBE documentation for a person descrip-

ron..

SCRIBE-DOCUIE7uT-RAIIDOO1-COMPLEX-EXPLAIIATIOII is a user defined lisp function which has an argument list
of (EXPLANATION STREAM), and is documented as: "Documents an indistinctive collection of units.".

SCRIBE-DOCU1,IEIITOR-FOR-CODED-FUllCTIOilS is a user defined lisp function which has an argument list of

(EXPLANATION STREAM), and is documented as: "Produces SCRIBE documentation for an automati-

cally coded function.".

SCRIBE-DOCUI ZIITOR-FOR-CODERS is a user defined lisp function which has an argument list of (EXPLA-

NATION STREAM), and is documented as: "Produces SCRIBE documentation for an ARLO coder.".

SCRIBE-DOCU EITOR-FOR- RAIDOII-UuI T-EXPLAIIATIOl:S is a user defined lisp function which has an argument
list of (EXPLANATION STREAM), and is documented as: "Generates a scribe explanation for a unit

explanation."

SCRIBE-DOCUIEIITOR-FOR-SLOT-EXPLA:ATI0:IS is a user defined lisp function which has an argument list of
(EXPLANATION STREAM). aid i doumieutltd a,: (Cc,rafts (z scribe tzplanation for some slot.".

80

-- %

ARLO Ken Haase

SCRIBE-DOCU1EVTOR-FOR-TYPE-EXPLANATIO1S is a user defined lisp function which has an argument list of

(EXPLANATION STREAM). and is documented as: "Generates a scribe explanation for some slot.".

SCRIBE-DOCU1,1E1TOR-FOR-USER-FUIJCTI0!!S is a user defined lisp function which has an argument list of

(EXPLANATION STREAM), and is documented as: "Produces SCRIBE documentation for an explanation

of a user function. '.

SECTIOIIZE-BY-HIERARCHICAL-SLOT is a user defined lisp function which has an argument list of (EXPLA-
NATION STREAM), and is documented as: "Documents a collection of units organized by a hierarchical

relation."

SECTI0IIZE-FILE-OF-DEFINIITION -SLOT is a user defined lisp function which has an argument list of (EX-

PLANATION STREAM), and is documented as: "Sets sectionization determined by file of definition.".

SECTIOIJIZE-GEJERALIZATIO11-SLOT is a user defined lisp function which has an argument list of (EXPLA-
NATION STREAM), and is documented as: "Sectionizes based on the GENERALIZATION slot.".

SECTIONI ZE-PROTOTYPE-.SLOT is a user defined lisp function which has an argument list of (EXPLANA-

TION STREAM), and is documented as: "Sectionizes based on the PROTOTYPE slot.".

SECTI OIZE-SUPERVISOR-SLOT is a user defined lisp function which has an argument list of (EXPLANA-
TION STREAM), and is documented as: "Sectionizes based on the INQ1JIR:SUPERVISOR slot.".

TO-DEFAULT-IIY-TO-SCRIBE-DOCUME11T-SELF is a user defined lisp function which has an argument list of
(UNIT SLOT), and is documented as: "Looks on ones prototypes for a function and otherwise returns a

* default."

TO-DEFAULT-POSITIOIDAL-ASSUI.IPTIOIIS is a user defined lisp function which has an argument list of (EX-
PLANATION IGNORE), and is documented as: "Adds a units superiors primary division to its positional

assumptions."

TO-DEFAULT-TO-SECTIOIJIZE-BY is a user defined lisp function which has an argument list of (UNIT SLOT),
and is documented as: "Looks on ones prototypes for a function and otherwise returns a default.".

A-2.1.3 Units with a prototype of Slot

.ly-To-Scribe-Document-Self is a slot which accepts values of type Function Type and akes sense for

units of type Unit Type. This is the function for writing SCRIBE documentation for a unit. Its value defaults
by the function ARLO:TO-DEFAULT-MY-TO-SCRIBE-DOCUMENT-SELF, which:

Look.z on ones prototypes for a fun:tion and otherwise returns a default.

To-Sectionize-By is a slot which a(cepts values of type Function Type and makes sense for units of type
Slot Type. This is the function for sectionizing a description focussed on this slot. Its value defaults by the

function ARLO:TO-DEFAI_'LT-TO-SE('TIONIZE-BY, which:

Looks on ones prototypes for a function and otherwise returns a default.

To-Speak-Value is a slot which accepts values of type Function Type and makes sense for units of type
Slot Type. This describes how to say this slot in English (sort of).

4 A-2.2 Units defined in Arlo: Al: EXPLAIN

These units are Iesi ,rgani zed hy the Prototype relfltion.

L 81

ARLO Ken Haase

A-2.2.1 Units without any prototype.

The unit Explanation is defined iii the knowledge base Explain. This is the prototypical explanation.

A-2.2.2 Units with a prototype of Explanation Slot

Explanation-Kb is a slot which accepts values of type Any Type and makes sense for units of type
Explanation Type. This is the knowledge base in which this explanation is consed up. Its value defaults by
the function ARLO:GET-ORIGINAL-KB, which:

Extracts the knowledge base a unit was originally in.

Explanation-Title is a slot which accepts values of type String Type and makes sense for units of type
q• ,,Explanation Type. This is a string describing this explanation.

Relevant-Slots is a slot which accepts values of type Any Type and makes sense for units of type

Explanation Type. This is a list of the slots relevant to this explanation. Its value defaults by the function
INHERIT-THROUGH-SUPER-EXPLANATION, which:

Searches through the ('ORE:EXPLAIN:SUPER-EXPLANATION slots of a unit for a value.

Super-Explanation is a slot which accepts values of type Any Type and makes sense for units of type
Explanation Type. This is the explanation this explanation is a component of.

A-2.2.3 Units with a prototype of Explanation

The unit Unit Explanation is defined in the knowledge base Explain. This is the prototypical expla-
nation of an individual unit.

%, The unit Unit Set Explanation is defined in the knowledge base Explain. This is the prototypical
explanation of a set of units.

A-2.2.4 Units with a prototype of Hand Coded Function

CO1.MPUTE-CHUNK-SIZE is a user defined lisp function which has an argument list of (PARTITION), and is
documented as: "Computes the average s;zc of classzified chunks in this partition.".

COIISTRUCT-EXPLAX;ATIO2. is a user defined lisp function which has an argument list of (TITLE SYMBOLIC-

DIVISION IN-EXPLANATION UNITS STRUCTURE), and is documented as: "Constructs an explanation

for a set of units.".
EXTE::D-PARTITI0:: is a user defined lisp function which has an argument list of (PARTITION ELEMENT

GROUTP), and is documented as: "This adds an element and it. associated group - to a partition.

EXTRACT-SI!.:PLEST-PARTITIOI is a user defined lisp function which has an argument list of (PARTITIONS),
and is documented as: "Selects the partition with the largest 'chunks'from a list of partitions.".

GOE:ERATE-EXCUSES is a user defined lisp fumction which has an argument list of (EXPLANATION), and

is documiented as: "Generates an explanation for the 'misfits' of an explanation.".

GEERATE-SET-PARTITIOSis a user defined lisp function which has an argument list of (FOR-EXPLANATION),
and is documented as: "('ornputes or reduces (from its Squp r-explanation) the partitions far an explanation. '.

GE.ERATE-SUB-EXPILUIATIDU1S is a user defined lisp function which has an argument list of (EXPLANA-
TION), and 1is documemited as: "(;enerates sub explonatz.oi4 fr,,rm the partttion (f an uxplanation.".

* 82

•",.

... ..,,o

ARLO Ken Haase

GENERATE-UIIIT-EXPLAVATIO, is a user defined lisp function which has an argument list of (UNIT SUPER-
EXPLANATION), and is documented as: "This generate. an explanation obyect for a particular unit. "

GET-ORIGI!!AL-KB is a user defined lisp function which has an argument list of (U:NIT IGNORE), and is
documented as: "Extracts the knowlhdge base a unit was originally in.'

PARTITIOI,-U::ITS is a user defined lisp function which has an argulment list of (I'NITS BY-SLOT), and
is documented as: "This takes some units and returns the partition dit Jim d over them by some slot.

REDUCE-PARTITI0:! is a user defined lisp function which has all arigumen list of (PARTITION OVER-
UNITS), and is documented as: "This takes the subset of a pairtition dth rmined by somt set of units."

REDUCE-PARTITIO:2-SET is a user defined lisp function which has ani argument list of (PARTITION-SET
OVER-UNITS OVER-SLOTS), and is documented as: "This taktes a set of partitions and reduces each one.".

TO-DEFAULT-SET-PARTITI011S is a user defined lisp fuuction which has an argument list of (FOR-EXPLANATION
IGNORE), and is documented as: "Computes or reduces (from its super-ezpanation) the partitions for an

explanation. ".

TO-DEFAULT-SUB-DIVISIOiS is a user defined lisp function which has an argument list of (EXPLANATION
IGNORE), and is documented as: "Selects the partition uith the largt .:t 'chunks'from a list of partitions. ".

TO-DEFAULT-SUB-E XPLAIIATI0:1S is a user defined lisp funt io which hals ij ;rgmuinent list of (EXPLANA-
TION IGNORE), and is documented as: "Generates sub explanations from the partition of an explanation. ".

TO-DEFAULT-UMXPLAI "ED-U' ITS is a user defined lisp function which has an argument list of (EXPLA-
NATION IGNORE), and is documented as: "Generates an explanation for the 'misfits'of an explanation.".

A-2.2.5 Units with a prototype of Slot

Explanation-Slot is a slot which accepts values of type Any Type and makes sense for units of type
Explanation Type. This is the prototypical slot referring to explanations.

To-Partition-By is a slot which accepts values of type Any Type and makes sense for units of type

Slot Type. This tells how to partition by a particular slot. Its value defaults by the function INHERIT-
THROUGH-PROTOTYPE, which:

Searches through the ('ORE:PROTOTYPE slots of a unit for a value.

Unit-Explanation-Slot is a slot which accepts values of type Any Type and makes sense for units of type
Unit Explanation Typ(. This is the prototypical slot referrinig to imit explanations.

Unit-Set-Explanation-Slot is a slot which accepts values of type An Type anid niakes sense for units of
type Unit Set Explanation Type. This is the prototypical slot referrinig to unit set explanations.

A-2.2.6 Units with a prototype of Type

Explanation-Type specifies a class of LISP objects which are classified by Unit-Type and which addition-
ally satisfy the predicate FTOTOTYPE-OF-EXPLA::ATIOI:? (documented as ('hecks to see if a unit inherits from
('ORE:EXPLAIN.EXPLANATION via ('ORE:JROTOTYJ'E. ")_ This is a type satisifed by units inheriting

(via tile Prototype relation) from the u nit Explanation.

Unit-Explanation-Type specifies a class of LISP objects which are classified by Unit-Type and %hich ad-
(lit io,ally at isfy tie pir-dicate PROTOTYPE-OF-U:'IT-EXPLA::ATIO: 9 (docullmtll el :as "(h'k ' ,I t I if a Uot 4Zi"

83

%9

V .

7 7, .. v -- - .;. . z'- ". . " , '. " "'- -". "- .- ' ". .. N""" -','" ,""- " " -""- "" ",."-.,.......
-- .. "

W.

ARLO Ken Haase

herits from CORE:EXPLAIN:ITNIT-EXPLANATION via C'ORE:PROTO TYPE. "), This is a type satisifed

by units inheriting (via the Prototype relation) from the unit U7nit Explanation.

Unit-Set-Explanation-Type specifies a class of LISP objects which are classified by Unit-Type and which
additionally satisfy the predicate PROTOTYPE-OF-U:IIT-SET-EXPLAIATIOI! " (documented as "Checks to see if a

unit inherits from ('ORE:EXPLAIN:UNIT-SET-EXPLANATION via ('ORE:PROTO TYPE."). This is a

type satisifed by units inheriting (via the Prototype relation) from the unit Unit Set Explanation.

A-2.2.7 Units with a prototype of Unit Explanation Slot

Unit-To-Explain is a slot which accepts values of type Any Type and makes sense for units of type Unit

Explanation Type. This is the individual unit this explanation is about.

A-2.2.8 Units with a prototype of Unit Set Explanation Slot

These units all have MAKES-SENSE-FOR slots of Unit-Set-Explanation-Type.

These units are best organized by the Data Type relation.

Units with a Data Type slot of Any-Type

Sub-Explanations is a slot winch accepts values of type Any Type and makes sense for units of type Unit Set

Explanation Type. These are the explanations which are component to this explanation. Its value defaults
by the function ARLO:TO-DEFAULT-SUA-EXPLANATIONS, which:

Generates sub explanations from the partition of an cxplanation.

Symbolic-Division is a slot which accepts values of type Any Type and makes sense for units of type

Unit Set Explanation Type. This is a symbolic description of the focus of this explanation.

Unexplaaned-Units is a slot which accepts values of type Any Type and makes sense for units of type

Unit Set Explanation Type. This is an explanation of the units not covered in this explanation. Its value

defaults by the function ARLO:TO-DEFAULT-UNEXPLAINED- VNITS, which:

Generates an explanation for the 'misfits' of an explanation.

Units with a Data Type slot of Integer-Type

Section-Size is a slot which accepts values of type lnteger Type and makes sense for units of type Unit Set

Explanation Type. This is the threshold when explanation sectionizatmno is attempted.

Units with a Data Type slot of List-Type

Relevant-Units is a slot which accepts values of type List Type and makes sense for units of type Unit Set

Explanation Type. This is a list of the units this explanation refers to.

Set-Partitions is a slot which accepts values of type List Type and makes sense for units of type Unit

Set Explanation Type. This is a list of the possible partitions of this set of units. Its value defaults by the .

function ARLO:TO-DEFA ULT-SET-PARTITIONS, which:

('ornputes or reduces (from its super-cxplanatlon) the partttions for an explanation.

Structural-Slots is a slot which accepts values of type L?st Type and makes sense for unitu of type U'nit
So{t Explanation TyI,, This is :i list of the slots which mItay sectiotlize this explanatim.

84

I-a'

- i .,..,.. .' .iX 4'

ARLO Ken Haase

Sub-Divisions is a slot which accepts values of type List Type and makes sense for units of type Unit sft

Ezplanation Type. This is the most relevant partition of the set of units. Its value defaults by the function

ARLO:TO-DEA ULT-SUB-DIVISIONS, which:

Selects the partition with the largest 'chunks'from a list of part2tions.

A-2.3 Units defined in Arlo: SOURCES: LISP

DECACHE-FI::DER is a user defined lisp function which has aii argument list of (UNIT SLOT), and is

documented is: "This finds the dcaching functzon for a unit bY looking through its prototypes.".

d%%
1%%

-ILA

V.,

AD-A174 567 RRLO- ANOTHER REPRESENTATION LANGUAGE OFFER(U) 2/2
MASSACHUSETTS INST OF TECH CAMBRIDGE ARTIFICIAL
INTELLIGENCE LAB K W HARSE OCT 86 AI-TR-901

UNCLASSIFIED NeiOW4-85-K-ei24 F/G 9/2 NL

Eu..

l V,___=o _
-lU '__--

llii il_ ll .-
111I1IL25 11 11 .6

6CROCOPY RESOLUTION TEST CHART
NA BIUREAJ OF STANDARDS- 1963-A

I- I

ARLO Ken Haase

C7eA-3

ReferencesI

Bac78] John Backus. Can programming be liberated fronm tine von neumann style? a functional style and
its algebra of programs. CYommunications of the ACM, 21(8), August 1978.

* BS83] Daniel Bobrow and Mark Stefik. The Loops Manual. Xerox Corporation, 1983.
1 Can83l Howard Cannon. Programming with Flavors. Symbolics, Inc., Cambridge, Massacussets, 1983.
ICha83l David Chapman. Naive Mathematics and Naive Problem Solving. Working Paper 249, Artifical

Intelligence Laboratory, MIT, June 1983.
I Doy77] Jon Doyle. A Truth Maintenance System. Master's thesis, Massachussets Institute of Technology,

1977. Available as MIT Al Technical Report.
IGR841 Adele Goldberg and David Robson. Smalltalk-80: The Language an its Implementation. Addison-

Wesley, Reading, Massachusetts, 1984.
[Gre8OJ Russel Greiner. RLL-i: A Representation Langauge Language. Working Paper 80-9, Stanford

Heuristic Programming Project, October 1980.

IHaa86aI Ken Haase. ARLO': Describing Representations. Memo 955, Artificial Intelligence Laboratory,
MIT, 1986.

Haa8Ghj Ken Haase. Discovery system,. In ECA) '86 Proceedings, ECAI. August 1986. Also available a,
MIT Al Memo 899.

IHaa86c1 Ken Haase. Why Representation Language Languages tire No Good. Al Memno 943, Artificial
Intelligence Laboratory, MIT, October 1986.

111i)85) Danny Hillis. The Connection Machine. MIT Press, 1985.
[Hof8OJ Douglas Hofstader. Godel, Escher, Bach: An Eternal Golden Braid. Basic Books, 1980.
[Len821 Douglas B. Leniat. Ani: discovery in nmatlhematics as heuristic starch. In Knowledge-Based Systems

in Artificial Intelligence, McGraw Hlill, 1982.

I Len831 Doug Lenat. Eurisko: a program that learns new lieurist ics and dontaiii conicepts. The Al Journal,
March 1983. This is the last, in a scries of art iclcs on heuristi& ;bomn ers

80

ARLO Ken Haase

[LSP851 Doug Lenat, Mary Shepherd, and Mayank Prakash. Cyc: a large common-sense knowledge base.

Al Magazine, June 1985.

[McA781 David McAllester. A three-valued truth maintenance system. Al Meno 473, Artificial Intelligence
Laboratory, MIT, 1978.

IMcD83] David McDonald. Mumble: a natural language generation system. In Computational Theories of
Discourse, MIT Press, 1983.

jMi178! Robin Milner. A theory of type polymorphism in programming. Journal of Computer and System

Science 17, 1978.

!MP84: David McDonald and Robert Putojevsky. Generating text for an intelligent encyclopedia. In
AAAI-84, AAAI, August 1984.

1RG771 Bruce Roberts and Ira Goldstein. FRL Users Manual. Al Memo 408, Artificial Intelligence

Laboratory, MIT, 1977.

Ric80] Charles Rich. Inspection Methods In Programming. PhD thesis, Massachussets Institute of Tech-

nology, 1980. Also available as MIT Al Lab Technical Report 604.

SR76j Howard Shrobe and Charles Rich. Initial Report on a LISP Programmers Apprentice. Master's

thesis, Massachussets Institute of Technology, 1976. Also available as MIT Al Lab Technical

Report 354.

iSte79 Mark Stefik. An examination of a frame-structured representation system. In Proceedings of the

Sixth International Joint Conference on Artificial Intelligence, IJ('AI, August 1979.

jSte84j Guy L. et al Steele. Common Lisp Reference Manual. Digital Equipment Corporation, Maynard,

Massacussets, 1984.
[Wat78] Richard Waters. Automatic Analysis of the Logical Structure Of Programs. PhD thesis, Mas-

sachussets Institute of Technology, 1978. Also available as MIT Al Lab Technical Report 492.

_Wei83i Daniel Weinreb. Signalling and Handling Conditions. Symbolics, Inc., Cambridge, Massacussets,

1983.

WM82] Daniel Weinreb and David Moon. Lisp Machine Manual. Symbolics, Inc., Cambridge, Massacus-

sets, 1982.

87

' V,.

00003"

